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Abstract. A definition of detailed balance for quantum dynamical semigroups is
given, and its close connection with the KMS condition is investigated.

1. Introduction

In recent works [1-3] various definitions of detailed balance for a quantum
Markovian master equation have been proposed and discussed. In this paper, we
give a definition of detailed balance for a quantum dynamical semigroup of a PF*-
algebra, which extends the analogous notion proposed in [3] for quantum
dynamical semigroups of matrix algebras (for a heuristic motivation, based on the
analogy with the corresponding classical concept, see [3,4]). We give the general
form of the generator L of a dynamical semigroup of ̂ p f ) satisfying detailed
balance and with a norm continuous dissipative part, thus extending the result of
[3].

The physical meaning of this seemingly formal definition is investigated by
showing that the property of detailed balance is characteristic of dynamical
semigroups describing relaxation to thermal equilibrium, thus providing yet
another characterization of KMS states.

2. Quantum Detailed Balance

Let Jί be a PF*-algebra. A dynamical semigroup of Jί [5-7] is a weakly *-
continuous one-parameter semigroup {Φt:t^0} of completely positive identity
preserving normal maps of Jt into itself, with Φo the identity map.

Let ρ be a faithful normal state on Ji which is stationary under {Φt}, and denote
by (Jf, π, Ω) the GNS triple associated to ρ. There exists [8,9] a strongly continuous
contraction semigroup {Φt} on J Γ such that

Φtπ(Λ)Ω = π(Φt(Λ))Ω for all AeJί, ί^O. (2.1)
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