Pressure and Variational Principle for Random Ising Model

F. Ledrappier

Université Pierre et Marie Curie, Laboratoire de Calcul Probabilités, F-75230 Paris, France

Abstract. An Ising model traditionally is a model for a repartition of spins on a lattice. Griffiths and Lebowitz ([3. 5]) have considered distributions of spins which can occur only on some randomly prescribed sites—Edwards and Anderson have introduced models where the interaction was random ([6, 7]). In both cases, the formalism of statistical mechanics reduces mainly to a relativised variational principle, which has been proved recently by Walters and the author [1]. In this note, we show how that reduction works and formulate the corresponding results on an example of either model.

1. Notations and Results

Let $Y = \{0, 1\}^{\mathbb{Z}^d}$, $X = \{0, +1, -1\}^{\mathbb{Z}^d}$ be the sets of configurations of particles (respectively of particles with a spin) on a lattice \mathbb{Z}^d , Let $\pi: X \to Y$ denote the natural map such that $(\pi(x))_s = |x_s|$ for s in \mathbb{Z}^d , τ_s the shift transformations on X and Y, Λ_n the positive cube of side n containing the point (0, 0, ..., 0) of \mathbb{Z}^d . A point y is said generic

for an invariant measure v on Y if the measures $\frac{1}{n^d} \sum_{s \in A_n} \delta_{\tau_s y}$ converge towards the measure v (δ_z denotes the Dirac measure at the point z).

Let J, h be real numbers. For x in X with $x_s = 0$ except for a finite number of s, define:

$$U(x) = \sum_{s \in \mathbf{Z}^d} hx_s + \sum_{\substack{s,t \in \mathbf{Z}^d \\ |s-t|=1}} Jx_s x_t ,$$

where $|s| = \sum_{i} |s_i|$ if $s = (s_i, i = 1, ..., d)$.

For any finite subset Λ of Z^d and any y in Y let us consider the partition function of the box Λ above $yZ_{\Lambda}(y)$:

$$Z_A(y) = \sum \exp(-U(x)) ,$$

where the summation is made over the set of x such that $|x_s| = y_s$ for s in Λ , $x_s = 0$ elsewhere. Let $M(X, \tau)$ denote the set of invariant probability measures on X.