Commun. math. Phys. 56, 87-90 (1977)

Energy Spectrum of Extremal Invariant States

Richard H. Herman and Daniel Kastler*

Department of Mathematics, Pennsylvania State University, University Park, Pennsylvania 16802, USA

Abstract. For an extremal invariant state ω of a weakly asymptotically abelian dynamical system we prove that the corresponding energy spectrum is either one-sided or the whole reals, or a periodic subgroup. The latter case implies abelianness of the algebra in the representation generated by ω .

The purpose of this note is to extend to weakly clustering (i.e. extremal invariant) states of asymptotically abelian systems a spectral alternative useful e.g. in deriving the KMS condition from stability assumptions (Prop. 3 of [1], see also Theorem 6.1 of [2]). This result follows from the long known fact that the energy spectrum of clustering states is additive [3]. The generalization we present here is relevant to the description of e.g. crystal states in motion.

Assumptions. $\{\mathfrak{A}, \mathfrak{R}, \alpha\}$ is the triple of a C*-algebra \mathfrak{A} together with a strongly continuous one-parameter group $t \in \mathbb{R} \to \alpha_t$ of *-automorphisms of \mathfrak{A} . We consider an α -invariant state ω of \mathfrak{A} such that

(i) (asymptotic abelianness) for any two A, $B \in \mathfrak{A}$ the commutator $[\alpha_t(A), B]$ tends to zero in mean under all states of the normal folium of ω :

$$\frac{1}{2T} \int_{-T}^{+T} \left[C[\alpha_t(A), B] D \right] dt \xrightarrow[T \to \infty]{} 0, \quad A, B, C, D \in \mathfrak{A}.$$
(1)

(ii) (weak clustering)

$$\frac{1}{2T} \int_{-T}^{+T} \omega(A\alpha_t(B)) dt \xrightarrow[T \to \infty]{} \omega(A)\omega(B), \quad A, B \in \mathfrak{A}.$$
(2)

Theorem. Assume the above situation. Let (π, U) be the covariant representation of $\{\mathfrak{A}, R, \alpha\}$, on the Hilbert space \mathscr{H} with cyclic invariant vector Ω , generated by the state ω via the GNS construction. We have the following alternatives