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Abstract. The subgroups of the symmetry group of the gauge invariant
Lagrangian are studied. For given subgroup G the G-invariant gauge fields are
listed.

Let F(φ) be a G-invariant functional and let H be a subgroup of the symmetry group
G. It is easy to prove under certain conditions that every extremal of the functional
F(φ) considered only in the iϊ-invariant fields is an extremal of this functional on all
fields (see for instance [1]). This assertion can be used to search solutions of classical
field equations especially in gauge theories. In these theories the functionals under
consideration are invariant with respect to the group R generated by local gauge
transformations and spatial symmetries. To apply the assertion above one must
find the subgroups of the group R and for given subgroup G C R one must find all G-
invariant fields. In present paper we solve these two problems. Some results in this
direction were obtained earlier by Burlankov [2] and used in [9].

To facilitate the reading to physicists we have divided the paper in two sections.
The considerations of Section 1 used only notions familiar to physicists but in
Section 2 we use the geometrical language of fibre space theory (see for instance

[3]).
All manifolds and all maps under consideration will be supposed smooth.

Section 1

We denote by 0 the group of spatial symmetries. (This group acts on a manifold M
in physical applications usually M is three-dimensional or four-dimensional
euclidean space.) The group of local gauge transformations will be denoted by K^
and the group generated by K^ and 0 will be denoted by R. The group K^ can be
identified with the group of smooth functions on M taking values in the gauge
group K. The group R can be considered as the group of pairs (k(x),g) where
k(x)eKo0, ge G and the product of pairs (k^x), g^eR, (k2(x), g2)εRis a pair {k(x\ g)


