Holonomic Character and Local Monodromy Structure of Feynman Integrals

Masaki Kashiwara*

Mathematical Institute, Nagoya University, Nagoya, Japan, and Department of Mathematics, Harvard University, Cambridge, Massachusetts, USA

Takahiro Kawai**

Research Institute for Mathematical Sciences, Kyoto University, Kyoto, Japan, and Department of Mathematics, University of California, Berkeley, California, USA

Abstract. We prove that the micro-local holonomic structure controls the local monodromy structure of functions involved. This result plays an essential role in investigating "hierarchical principle" in perturbation theory.

§1. Introduction

At the occasion of Kyoto symposium $(M \cap \Phi)$ in 1975, Sato [15] emphasized the importance of holonomic systems of micro-differential equations¹ in investigating the S-matrix and related functions. At least in the case of Feynman integrals this point of view (i.e. the use of over-determined system of linear differential equations) was also emphasized by Regge [12] as early as 1967.

In this approach, the first thing to do is to establish the fact that the S-matrix and/or Feynman integrals satisfy some holonomic systems of (micro-)differential equations. Partial results were given for Feynman integrals by Barucchi and Ponzaro [1] and Sato [15] and for the S-matrix by Kawai and Stapp [5, 6]. In this direction a decisive result has recently been given for arbitrary Feynman integrals by Kashiwara and Kawai [3,4].

Having this situation in mind, we show in this article how the holonomic structure controls the local sheet structure of Feynman integrals. More precisely, we show in Theorem 2 that our main result (Theorem 1) applied to Feynman integrals entails that the local monodromy structure of the Feynman integral associated with a Feynman diagram D controls that of the Feynman integral associated with the "daughter" diagram D' of D under moderate conditions. Thus our results find an intimate connection with the celebrated "hierarchical principle" proposed by

^{*} Supported by National Science Foundation

^{**} Supported by Miller Institute for Basic Research in Science

¹ In Sato et al. [16], a holonomic system is called a maximally overdetermined system and a microdifferential equation (operator, resp.) is called a pseudo-differential equation (operator, resp.). Here we change our terminology according to the suggestion of Prof. Sato. We also use the terminology "holonomicity of a function" to indicate the holonomic character of the function, i.e., the fact that the function satisfies a holonomic system of (micro-)differential equations.