Two Bianchi Type VIII Spatially Homogeneous Cosmologies ${ }^{\star}$

J. G. Miller
Department of Physics, University of Utah, Salt Lake City, Utah 84112, USA

Abstract

We study two Bianchi type VIII analogues of Taub space and maximal analytic extensions of them. The first one has $\operatorname{SL}(2, R)$ as an isometry group, which acts transitively on spacelike hypersurfaces. The maximal extension has all of the pathological features of Taub-NUT space. The second one has the universal covering group of $\operatorname{SL}(2, R)$ as an isometry group. The maximal extension of the latter does not have these pathological properties and is geodesically complete.

1. Local Solutions of the Einstein-Maxwell Equations

Local solutions of the Einstein-Maxwell vacuum field equations have been derived by Carter [1] under the condition that the metrics admit a two-dimensional abelian isometry group and that the Hamilton-Jacobi equation for the geodesics and the Schrödinger equation separate in certain coordinate systems. The metrics contain several parameters and when some of the parameters are zero, the metrics admit a four-dimensional local isometry group. It is our aim to study two of these metrics that admit a four-dimensional local isometry group and show that they are special Bianchi type VIII spatially homogeneous cosmologies. Bianchi's classification of three-dimensional real Lie algebras into nine types is given by Taub [2]. Since the two metrics are Bianchi type VIII analogues of the Bianchi type IX metric discovered by Taub [2], we first review the known facts about the latter metric [3]. We will compare Taub space with the two Bianchi type VIII metrics throughout the paper.

The three metrics under consideration in this paper are all special cases of Carter's [1] metrics listed in class $[\tilde{B}(+)]$. We first consider the "charged" TaubNut metric [4] given by

$$
\begin{align*}
g= & \left(t^{2}+l^{2}\right)\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)-4 l^{2} \Delta\left(t^{2}+l^{2}\right)^{-1}(d \psi+\cos \theta d \phi)^{2} \\
& +\left(t^{2}+l^{2}\right) \Delta^{-1} d t^{2}, \tag{1}
\end{align*}
$$

[^0]
[^0]: * Work supported in part by NSF Grant MPS 74-16311 AO1

