On the Construction of Quasimodes Associated with Stable Periodic Orbits*

J. V. Ralston

Department of Mathematics, UCLA, Los Angeles, California 90024, USA

Abstract. Let $H(x, D, \varepsilon)$ be a self-adjoint partial differential operator of the form

$$H = \sum_{k=0}^{K} \varepsilon^{k} H_{k}(x, \varepsilon D), \qquad x \in \mathbb{R}^{n}.$$

Suppose the hamiltonian system

$$\dot{x} = \frac{\partial H_0}{\partial \xi}, \quad \dot{\xi} = -\frac{\partial H_0}{\partial x}$$

has a nondegenerate stable periodic orbit γ on which $\dot{x} \neq 0$. Then it is possible to construct a sequence of real numbers ε_m tending to zero, a sequence of functions u_m concentrated in a tube of radius $\varepsilon_m^{1/2}$ about the projection of γ into x-space, and a polynomial $E(\varepsilon)$ such that

 $\|(H(\varepsilon_m) - E(\varepsilon_m))u_m\| \leq C\varepsilon_m^M \|u_m\|.$

The power M depends on the order of stability of γ . The constructions are explicit in terms of solutions of linear O.D.E.'s, and are generalizations of "gaussian beams". Actually, instead of just one sequence, one gets a family of sequences parametrized by the multi-indices of order n-1, but the constant C is not independent of these multi-indices. The nondegeneracy hypothesis implies γ is part of a one-parameter family of stable periodic orbits, and C is independent of this parameter.

After presenting the constructions, we discuss their application to the quasi-classical limit in quantum mechanics and their relation to work of Keller, Maslov and others.

We wish to study the behavior of the spectrum of a linear partial differential operator, $P(x, D, \varepsilon)$, depending on a parameter ε , as ε tends to zero.. We assume

 $P(x, D, \varepsilon) = \sum a_{\alpha}(x, \varepsilon) D^{\alpha}$

^{*} Supported by a fellowship from the Alfred Sloan Foundation