© by Springer-Verlag 1976

Probability Estimates for Continuous Spin Systems

D. Ruelle

Institut des Hautes Etudes Scientifiques, F-91440 Bures-sur-Yvette, France

Abstract. Probability estimates for classical systems of particles with superstable interactions [1] are extended to continuous spin systems.

1. Notation and Assumptions

On a lattice \mathbb{Z}^{ν} we consider continuous d-dimensional spins. A spin configuration

in
$$A \in \mathbb{Z}^v$$
 is thus a function $s_A : A \mapsto \mathbb{R}^d$; its value at $x \in A$ will be denoted by s_x .

If $x = (x^1, ..., x^v) \in \mathbb{Z}^v$, we write $|x| = \max_i |x^i|$. If $s = (s^1, ..., s^d) \in \mathbb{R}^d$, we write $|s| = \left(\sum_i (s^i)^2\right)^{1/2} = \sqrt{s^2}$.

A measure $\mu \ge 0$ on \mathbb{R}^d is given such that

$$\int \mu(ds)e^{-\alpha s^2} < +\infty$$

if $\alpha > 0$, and μ is not identically 0.

We shall call interaction a real function U on all configurations in all finite $\Lambda \subset \mathbb{Z}^{\nu}$ satisfying the following conditions.

- (a) U is $\otimes^A \mu$ -measurable on $(\mathbb{R}^d)^A$ and invariant under translations of \mathbb{Z}^v .
- (b) Superstability. There exist A>0, $C\in\mathbb{R}$ such that if $s_A\in(\mathbb{R}^d)^A$ is a configuration on any finite Λ , then

$$U(S_A) \ge \sum_{x \in A} [As_x^2 - C]$$
.

(c) Regularity. There exists a decreasing positive function Ψ on the natural integers such that

$$\sum_{x\in\mathbb{Z}^{\nu}}\Psi(|x|)<+\infty.$$

Furthermore if Λ_1 , Λ_2 are disjoint finite subsets of \mathbb{Z}^{ν} and s_{Λ_1} , s_{Λ_2} the restrictions to Λ_1 , Λ_2 of a configuration $s_{\Lambda_1 \cup \Lambda_2}$ on $\Lambda_1 \cup \Lambda_2$, then

$$|W(s_{\varLambda_1\cup\varLambda_2})| \leq \sum_{x\in\varLambda_1} \sum_{y\in\varLambda_2} \Psi(|y-x|) \tfrac{1}{2} \left(s_x^2 + s_y^2\right)$$