The Existence of Maximal Slicings in Asymptotically Flat Spacetimes

M. Cantor*, A. Fischer** ***, J. Marsden⁺ ***, N. \overline{O} Murchadha⁺⁺, and J. York⁺⁺

Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27514, USA

Abstract. We consider Cauchy data (g, π) on \mathbb{R}^3 that are asymptotically Euclidean and that satisfy the vacuum constraint equations of general relativity. Only those (g, π) are treated that can be joined by a curve of "sufficiently bounded" initial data to the trivial data $(\delta, 0)$. It is shown that in the Cauchy developments of such data, the maximal slicing condition $\mathrm{tr}\pi=0$ can always be satisfied. The proof uses the recently introduced "weighted Sobolev spaces" of Nirenberg, Walker, and Cantor.

Consider the set \mathscr{C} of spacetimes which are the Cauchy developments of initial data (g, π) on \mathbb{R}^3 which are asymptotically Euclidean and which satisfy the constraint equations [see (3) and (4) below] in the dynamical formulation of general relativity [1]. In 1968, Brill and Deser [2] conjectured that one can maximally slice any such spacetime, i.e. one can find spacelike hypersurfaces on which tr $\pi=0$. In a Hamiltonian analysis of general relativity tr π assumes the role of a gauge variable (see for example [12]) and so one would expect that the tr $\pi=0$ condition can be met in any such spacetime. Here we prove that the Brill-Deser conjecture is true.

We consider only those (g, π) which can be joined by a curve of "sufficiently bounded" initial data (to be explained later) to flat space $(\delta, 0)$. Thus we are considering the component \mathscr{C}_0 of $(\delta, 0)$ in the set of asymptotically Euclidean solutions of the constraint equations. \mathscr{C}_0 is restricted to those 3-metrics which are derived from Lorentz metrics on \mathbb{R}^4 that are near the "background" Minowski metric. The set \mathscr{C}_0 is discussed in [7–11].

^{*} Present address: Department of Mathematics, Duke University, Durham, North Carolina 27706, USA

^{**} Present address: Department of Mathematics, University of California, Santa Cruz, California 95064, USA

^{***} Research partially supported by National Science Foundation Grants GP-39060 and GP-15735

⁺ Present address: Department of Mathematics, University of California, Berkeley, California 94720, USA

 $^{^{+\,+}\,}$ Research partially supported by National Science Foundation Grant GP-43909 to the University of North Carolina