Commun. math. Phys. 48, 249-265 (1976)

Applications of the Stochastic Ising Model to the Gibbs States*

Richard A. Holley and Daniel W. Stroock Department of Mathematics, University of Colorado, Boulder, Colorado, USA

Abstract. The stochastic Ising model is used as a tool to prove theorems concerning analyticity of the correlation functions and strong cluster properties of the Gibbs states.

0. Introduction

The stochastic Ising model has been used as a model for the time evolution of the configuration of spins in the classical Ising model. From a physical point of view the model has the unfortunate feature that the dynamics do not come from a Hamiltonian and are not well motivated. Nevertheless it is possible to learn something about a Gibbs state by studying the semi-group of the stochastic Ising model which has that Gibbs state as its stationary measure. The results proved in this paper demonstrate this technique.

Let Z^d be the *d*-dimensional integer lattice and let $\{J_R : R \text{ a finite subset of } Z^d\}$ be a potential which satisfies

(0.1)
$$J_R = J_{R+k}$$
 for all $R \in \mathbb{Z}^d$ and $k \in \mathbb{Z}^d$

and

$$(0.2) \quad \sum_{R \ni 0} |J_R| < \infty \; .$$

Let $E = \{-1, 1\}^{Z^d}$ be the set of configurations of spins and give E the product topology. The elements of E are denoted by letters such as η or σ , and we denote the spin at k in the configuration η by η_k . Let \mathscr{B} be the Borel sets of E and if $F \subset Z^d$ let $\mathscr{B}_F(\widetilde{\mathscr{B}}^F)$ denote the σ -algebra generated by $\{\eta_k : k \in F\}$ ($\{\eta_k : k \notin F\}$). We say a probability measure μ on \mathscr{B} is a Gibbs state for the potential $\{J_R\}$ if a regular conditional probability distribution of μ on $\mathscr{B}_{\{k\}}$ given $\widetilde{\mathscr{B}}^{\{k\}}$ is given by

(0.3)
$$\varrho_k(\{\eta_k\} | \tilde{\eta}^k) = \left[1 + \exp\left[2 \sum_{R \ni k} J_R \prod_{j \in R} \eta_j \right] \right]^{-1} .$$

^{*} Research supported in part by N.S.F. Grant MPS74-18926.