© by Springer-Verlag 1976

Heat Equation on Phase Space and the Classical Limit of Quantum Mechanical Expectation Values

A. Grossmann

Centre de Physique Théorique, C.N.R.S., F-13274 Marseille Cedex 2, France

R. Seiler

Freie Universität Berlin, FB 20, Physik, D-1000 Berlin 33

Abstract. The expectation value of a quantum mechanical operator, taken in coherent states and suitably rescaled, is the solution of an initial value problem for the heat equation on phase space, in which \hbar plays the role of time, and the classical observable is the distribution of temperature at \hbar =0.

Introduction

A recent paper by Hepp [1] is devoted to the classical limit of (rescaled) expectation values in coherent states and to their time evolution. Here we sharpen some results of [1] by relating the classical limit to an initial value problem in \hbar . This is done with the help of a quantization formula derived in [2].

Notations

Denote by E a 2v-dimensional real vector space with a symplectic form σ . (Phase space for $v < \infty$ degrees of freedom.) Elements of E will be denoted by a, b, v.... Fix on E a σ -allowed complex structure J, i.e. a linear map satisfying $J^2 = -1$, $\sigma(Ja, Jv) = \sigma(a, v)$ and $\sigma(a, Ja) > 0$ for $a \neq 0$. Introduce the orthogonal form $s(a, v) = \sigma(a, Jv)$, and the (phase space) Gaussian $\Omega(v) = e^{-\pi s(v, v)}$. Normalize the invariant measure dv on E by the requirement $\int \Omega(v) dv = 1$. This is equivalent to the requirement $F^2 = 1$ where E is the symplectic Fourier transform:

$$Ff(v) = \tilde{f}(v) = \int e^{2i\pi\sigma(v,v')} f(v') dv'$$
.

In the Hilbert space $L^2(E; dv)$ consider the family of functions Ω^a :

$$\Omega^{a}(v) = e^{-2i\pi\sigma(a, v)}\Omega(v+a).$$

Denote by \mathscr{H} the closed linear span of the family Ω^a , with the scalar product inherited from $L^2(E; dv)$. For any $\Phi \in \mathscr{H}$ one has $(\Omega^a, \Phi) = k\Phi(-a)$, with

$$k=(\Omega,\Omega)=2^{-\nu}$$
.