On the Spinor Rank of Fermi Fields

A. Mardin and R. F. Streater*

ZIF, Universität Bielefeld, D-4800 Bielefeld, Federal Republic of Germany

Abstract. We show that any Wightman field satisfying equal-time anticommutation relations involving space derivatives of degree at most r must have spinor rank r+1.

Let ψ be a Wightman Fermi field, transforming according to the representation $\mathcal{D}_{j,k}$ of SL(2, \mathbb{C}):

$$U(A)\psi_{(\mu)}(x)U(A)^{-1} = (\underbrace{A^{-1}\otimes\ldots\otimes A^{-1}\otimes}_{2j} \underbrace{A^{*-1}\otimes\ldots\otimes A}_{2k}^{*-1})_{(\mu)(\nu)}\psi_{(\nu)}(A(A)x)$$

where $A \rightarrow \Lambda(A)$ is the usual homomorphism from SL(2, \mathbb{C}) to the Lorentz group. Suppose also that ψ satisfies canonical anti-commutation relations at time zero in the form

$$\{\psi_{(\mu)}(0, \mathbf{x}), \psi_{(\nu)}^{*}(0, \mathbf{y})\} = P_{(\mu)(\nu)}(\mathbf{V}) \,\delta^{3}(\mathbf{x} - \mathbf{y}) \,. \tag{1}$$

Here, P is a polynomial of degree r, and (μ) , (ν) denote spinor indices, 2j of which are undotted and 2k of which are dotted¹. We note that free fields of spin 1/2, $3/2, \ldots$ obey such relations, with $r=0, 2, \ldots$. From positivity, r must be even. If the spinor rank of ψ were $\leq r-1$, then the left hand side of (1) would transform as a spinor of rank at most 2r-2, i.e. the right hand side would be a polynomial in ∇ of degree at most r-1, a contradiction. Hence it is enough to show that the spinor rank s=2(j+k), cannot exceed r+1, as it is odd by the spin-statistics theorem. We use the methods of [1].

Let $A = A(\lambda) \in SL(2, \mathbb{C})$ be of the special form

$$A = A^* = \begin{pmatrix} \sqrt{\lambda} & 0\\ 0 & 1/\sqrt{\lambda} \end{pmatrix}, \quad \lambda > 0$$

^{*} Permanent address: Bedford College, Regents Park, London, England

¹ We denote dotted indices by dashed symbols.