Commun. math. Phys. 44, 53—72 (1975) © by Springer-Verlag 1975

Invariant States and Conditional Expectations of the Anticommutation Relations

John C. Wolfe*

Departments of Physics and of Mathematics, University of British Columbia, Vancouver, B. C., Canada

Received June 11, 1974; in revised form March 27, 1975

Abstract. The group G of unitary elements of a maximal abelian von Neumann algebra on a separable, complex Hilbert space H acts as a group of automorphisms on the CAR algebra $\mathscr{A}(H)$ over H. It is shown that the set of G-invariant states is a simplex, isomorphic to the set of regular probability measures on a w*-compact set S of G-invariant generalized free states. The GNS Hilbert space induced by an arbitrary G-invariant state on $\mathscr{A}(H)$ supports a *-representation of C(S); the canonical map of $\mathscr{A}(H)$ into C(S) can then be locally implemented by a normal, G-invariant conditional expectation.

In this paper we shall define observable Fermion number densities on the spectra of complete one particle observables and study the classical fields which they generate.

Let $\mathscr{A}(H)$ denote the C*-algebra of the Canonical Anticommutation Relations (CAR) over a complex, separable Hilbert space H. H will be fixed throughout and $\mathscr{A}(H)$ denoted by \mathscr{A} . \mathscr{A} is generated algebraically by the range of an antilinear map $f \rightarrow a(f)$ of H into \mathscr{A} obeying the CAR:

a(f)a(g) + a(g)a(f) = 0 $a^{*}(f)a(g) + a(g)a^{*}(f) = (g, f)$ $\forall f, g \in H$.

Let *u* be a unitary operator on *H*. Then the map $a(f) \rightarrow a(uf)$ extends uniquely to a *-automorphism α_u of \mathscr{A} . α_u is called the Bogoliubov automorphism induced by *u*.

Let \mathcal{O} be a self-adjoint operator on \mathcal{H} . \mathcal{O} shall be called complete if its spectral family generates a maximal abelian von Neumann algebra \mathcal{Y} on H. Let (X, B, μ) denote the spectral measure space of \mathcal{O} . By the well known isomorphism theorem (I § 7 and III § 1, Corollary 3 of Ref. [3]), completeness of \mathcal{O} leads to identification of \mathcal{H} with $\mathcal{L}^2(X, B, \mu)$ and of \mathcal{Y} with $\mathcal{L}^\infty(X, B, \mu)$.

When \mathcal{O} has discrete spectrum, the number density N on X is defined for each $x \in X$ by $N_x = a^*(\delta_x)a(\delta_x)$ where δ_x is the Kroenecker δ -function at $x \in X$. The number density N generates a classical field which is isomorphic to the lattice gas. One can also isolate the field and density by symmetry considerations (as we have remarked before [16]).

An observable in \mathscr{A} is called \mathcal{O} -diagonal if it is diagonal in the Fock representation with respect to the basis formed by anti-symmetric products of eigenvectors

^{*} Supported by National Research Council of Canada grants NRC A 3119 NRC A 6570, NRC A 126.