Representations and Inequalities for Ising Model Ursell Functions

Garrett S. Sylvester*
Department of Mathematics, MIT, Cambridge, Mass., Department of Physics, Harvard University, Cambridge, Mass., USA

Received January 13, 1975

Abstract

We describe and investigate representations for the Ursell function u_{n} of a family of n random variables $\left\{\sigma_{i}\right\}$. The representations involve independent but identically distributed copies of the family. We apply one of these representations in the case that the random variables are spins of a finite ferromagnetic Ising model with quadratic Hamiltonian to show that $(-1)^{\frac{n}{2}+1} u_{n}\left(\sigma_{1}, \ldots, \sigma_{n}\right) \geqq 0$ for $n=2,4$, and 6 by proving the stronger statement $\left.(-1)^{\frac{n}{2}+1} \frac{\partial^{m}}{\partial J_{i_{1} j_{1}} \cdots \partial J_{i_{m} j_{m}}} Z^{\frac{n}{2}} u_{n}\right|_{J=0} \geqq 0$ for $n=2,4$, and 6 , the J_{i}, being coupling constants in the Hamiltonian and Z the partition function. For general n we combine this result with various reductions to show that sufficiently simple derivatives of $(-1)^{\frac{n}{2}+1} Z^{\frac{n}{2}} u_{n}$, evaluated at zero coupling, are nonnegative. In particular, we conclude that $(-1)^{\frac{n}{2}+1} u_{n} \geqq 0$ if all couplings are nonzero and the inverse temperature β is sufficiently small or sufficiently large, though this result is not uniform in the order n or the system size. In an appendix we give a simple proof of recent inequalities which bound n-spin expectations by sums of products of simpler expectations.

1. Introduction

The Ursell function $u_{n}\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ of a family $\left\{\sigma_{i}\right\}$ of n arbitrary random variables may be defined by means of a generating function as

$$
\begin{equation*}
u_{n}\left(\sigma_{1}, \ldots, \sigma_{n}\right)=\left.\frac{\partial^{n}}{\partial \lambda_{1} \cdots \partial \lambda_{n}} \ln \mathscr{E}\left(\exp \left[\sum_{i=1}^{n} \lambda_{i} \sigma_{i}\right]\right)\right|_{\lambda=0} \tag{1.1}
\end{equation*}
$$

Here \mathscr{E} is the expectation integral; we assume all the necessary expectations are finite. The Ursell function may be defined recursively by

$$
\begin{equation*}
\mathscr{E}\left(\sigma_{1} \sigma_{2} \cdots \sigma_{n}\right)=\sum_{\mathscr{P}} \prod_{P \in \mathscr{P}} u_{|P|}\left(\sigma_{p_{a}}, \sigma_{p_{b}}, \ldots\right) \tag{1.2}
\end{equation*}
$$

Here \mathscr{P} is a partition of $\{1, \ldots, n\}$, a set $P \in \mathscr{P}$ has elements p_{a}, p_{b}, etc., and $|P|$ denotes the cardinality of P. Finally, $u_{n}\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ may be defined explicitly by

$$
\begin{equation*}
u_{n}\left(\sigma_{1}, \ldots, \sigma_{n}\right)=\sum_{\mathscr{P}}(-1)^{|\mathscr{P}|-1}(|\mathscr{P}|-1)!\prod_{P \in \mathscr{P}} \mathscr{E}\left(\prod_{p \in P} \sigma_{p}\right) \tag{1.3}
\end{equation*}
$$

where again \mathscr{P} is a partition of $\{1, \ldots, n\}$.

[^0]
[^0]: * MIT Allen Fellow in Mathematics.

 Supported in part by the National Science Foundation under Grant MPS 73-05037.

