Commun. math. Phys. 42, 29—30 (1975) © by Springer-Verlag 1975

On the Perturbation of Gibbs Semigroups

N. Angelescu and G. Nenciu

Institute for Atomic Physics, Bucharest, Romania

M. Bundaru

Institute of Physics, Bucharest, Romania

Received July 14, 1974

Abstract. The trace-norm convergence of the Hille-Phillips perturbation series is proved for the whole perturbation class of the generator of a Gibbs semigroup.

In Ref. [1], Uhlenbrock proposed the following terminology:

Definition. A selfadjoint semigroup $\{T(t)\}_{t \ge 0}$ in a separable Hilbert space with the property:

$$\operatorname{tr} T(t) < \infty, \quad \forall t > 0 \tag{1}$$

is called a Gibbs semigroup; and raised the problem of proving the trace-norm convergence of the Hille-Phillips perturbation series [2] for a conveniently large class of perturbations of the generator of a Gibbs semigroup. He gave also a proof of trace-norm convergence in the case of bounded perturbations, based on an inequality due to Ginibre and Gruber [3].

The aim of this note is to point out that a slight modification of this very argument allows to prove the trace-norm convergence of the series for the whole Hille-Phillips perturbation class.

Proposition. Let T(t) be a Gibbs semigroup and A its generator. Let B be A-bounded and such that:

$$\int_{0}^{1} \|BT(t)\| \, dt < \infty \,. \tag{2}$$

Then the series:

$$S(t) = \sum_{n=0}^{\infty} S_n(t)$$
(3)

with:

$$S_0(t) = T(t); \qquad S_n(t) = \int_0^t ds \, S_0(t-s) \, B \, S_{n-1}(s) \tag{4}$$

is $\|\cdot\|_1$ -convergent uniformly for t in compact subsets of $(0, \infty)$. In particular, if B is moreover symmetric, then S(t) is a Gibbs semigroup.

Proof. If B is A-bounded, then $BT(t) = [BR(\lambda, A)][(\lambda - A) T(t)]$ is bounded and condition (2) makes sense. One can write $S_n(t)$ as a multiple (trace-norm) Bôchner integral:

$$S_n(t) = \int \cdots \int ds_1 \dots ds_n \chi_n^t(s_0, s_1, \dots, s_n) S_0(s_0) B S_0(s_1) \dots B S_0(s_n),$$
(5)