Commun. math. Phys. 40, 75–82 (1975) © by Springer-Verlag 1975

Phase Transitions in Classical Heisenberg Ferromagnets with Arbitrary Parameter of Anisotropy

V. A. Malyshev

Moscow State University, Moscow, USSR

Received September 8, 1974

Abstract. The existence of a phase transition of the first kind is proved for anisotropic classical Heisenberg ferromagnet in two or more dimensions and with arbitrary parameter of anisotropy α , $|\alpha| < 1$; a similar fact is proved for much more general lattice spin systems.

Introduction

Bortz and Griffiths proved lately (see [1]) the existence of a phase transition for sufficiently low temperatures in anisotropic classical Heisenberg ferromagnets with small parameter of anisotropy $\alpha(|\alpha| < 0.0298 \text{ and } |\alpha| < 0.0198$ for a square lattice and simple cubic lattice, respectively). Here we prove the similar result for any α , $|\alpha| < 1$. It is the known Fisher's hypothesis (see [2]).

Theorem 1 of our paper contains essentially more general conditions for the existence of a phase transition of the first kind in lattice spin systems with continuous spin space.

The main difference between our method and the method of [1] is the following: in [1] the sharp "border" is constructed and we construct a spread gradually altering "border" (Bloch wall).

It is interesting to compare our result with the result of Mermin and Wagner (see [3]) about the impossibility of phase transitions of the sort considered here for the square lattice and for $|\alpha| = 1$.

1. Formulation of the Main Result

Let **T** be an abelian group \mathbb{Z}^{v} , $v \ge 2$, where **Z** is a group of integers. Let S be a compact separable metric space with finite nonnegative measure μ defined on Borel subsets of S. Assume to be given a real measurable function $U(s_1, s_2) = U(s_2, s_1)$ on $S \times S$ which is bounded from below on $S \times S$.

We shall consider Gibbsian random fields on a lattice \mathbb{T} with values in S for any $t \in T$ (see [4, 6]). For simplifying notations we shall discuss