Commun. math. Phys. 38, 29–45 (1974) © by Springer-Verlag 1974

Translation Invariant States in Quantum Mechanics

R. Beaume

Université d'Aix-Marseille II, U.E.R. de Marseille-Luminy, France

J. Manuceau and A. Pellet

Université de Provence, Marseille, France

M. Sirugue

Chargé de Recherches C.N.R.S., CPT Marseille, France

Received December 3, 1973

Abstract. We give a complete description of the states of the C.C.R. algebra for a finite number of degrees of freedom which are invariant with respect to subgroups of the translation group of phase space. We make precise some well-known results of quantum mechanics such as Bloch theorem.

§ I. Introduction

In this paper we shall deal with the algebra $\overline{\Delta(G,\xi)}$ of canonical commutation relations (C.C.R.) introduced in [2] (see also [3]) where G is an abelian group and ξ a bicharacter [Definition (2.1)]; for $G = \mathbb{R}^{2N}$ and $\xi((x, p), (x', p')) = \exp\left(-\frac{i}{2}\sum_{i=1}^{n} x_i p'_i - x'_i p_i\right)$, $(x, p) \in \mathbb{R}^{2N}$, $\overline{\Delta(\mathbb{R}^{2N}, \xi)}$ is the uniform closure of the *-algebra of the finite linear combinations of Weyl operators $\delta_{(x,p)}$. The interest of this algebra is that it has a large number of states; namely, any normalized linear positive function on the linear combinations of Weyl operators state of $\overline{\Delta(G,\xi)}$.

Translations by g in the phase space G are represented by a *automorphism τ_g of $\overline{\Delta(G, \xi)}$ which is inner:

$$\tau_{\boldsymbol{g}} \,\delta_{\boldsymbol{g}'} = \delta_{\boldsymbol{g}} \,\delta_{\boldsymbol{g}'} \,\delta_{\boldsymbol{g}}^{-1} = \xi(\boldsymbol{g}, \boldsymbol{g}')^2 \,\delta_{\boldsymbol{g}'}, \qquad \boldsymbol{g}, \boldsymbol{g}' \in \boldsymbol{G} \,.$$

Let H be a subgroup of G and let H' be the set of elements g of Gsuch that $\xi(g, h)^2 = 1$ for any $h \in H$. Then the invariant states ω of $\overline{\Delta(G, \xi)}$ with respect to the $\tau_h(h \in H)$ are those states for which $\omega(\delta_g) = 0$ if $g \notin H'$ [Proposition (2.13)]; conversely, let ω be a state of $\overline{\Delta(H', \xi')}$ where ξ' is the restriction of ξ to $H' \times H'$; then there exists an invariant extension $\overline{\omega}$ of ω to $\overline{\Delta(G, \xi)}$ which is given by $\overline{\omega}(\delta_g) = 0$ if $g \notin H'$ [Proposition (2.14)]. Moreover if $\overline{\Delta(H', \xi')}$ is abelian and if ω is pure, $\overline{\omega}$ is the unique (hence pure) extension of ω to $\overline{\Delta(G, \xi)}$ if and only if $\overline{\Delta(H', \xi')}$ is maximal abelian [Proposition (2.18)].