Commun. math. Phys. 38, 1-10 (1974) © by Springer-Verlag 1974

On the Equivalence of the KMS Condition and the Variational Principle for Quantum Lattice Systems

Huzihiro Araki

Research Institute for Mathematical Sciences, Kyoto University, Kyoto, Japan

Received May 16, 1974

Abstract. For quantum spin systems on a lattice of an arbitrary dimension, the KMS condition and the variational principle are shown to be equivalent at an arbitrary temperature for translationally invariant states.

§ 1. Main Result

The KMS condition and the variational principle are known to be equivalent for classical spin lattice systems [8]. The equivalence has been shown also for quantum spin lattice systems when either the dimension of the lattice is one or the temperature is high [7]. We shall prove the equivalence for any spin lattice system at arbitrary non-zero temperature.

We use the same notation as in [7]. The assumption on the interaction potential $\Phi(I)$ is as follows:

- (i) Translational covariance: $\Phi(I + a) = \tau(a) \Phi(I)$.
- (ii) Finite-body interaction: $\Phi(I) = 0$ if $N(I) \ge N_0$ for some N_0 . (iii) Relatively short range: $\|\Phi\| = \sum_{I \ge 0} \|\Phi(I)\| / N(I) < \infty$.

For a state ψ of the C*-algebra \mathfrak{A} (of quasi-local operators) and a finite subset Λ of the lattice, ψ_{Λ} denotes the restriction of ψ to $\mathfrak{A}(\Lambda)$ (the local subalgebra) and ϱ_w^A denotes the density matrix for ψ_A :

$$\varrho_{\psi}^{A} \in \mathfrak{A}(A), \quad \psi(Q) = \operatorname{tr}(\varrho_{\psi}^{A}Q) \quad \text{for all} \quad Q \in \mathfrak{A}(A).$$
(1.1)

The variational principle at the inverse temperature β is satisfied by a translationally invariant state ψ of \mathfrak{A} if

$$s(\psi) - \beta \psi(A) = P \equiv \lim_{A\uparrow} N(A)^{-1} \log \operatorname{tr}(e^{-\beta U(A)})$$
(1.2)

where $s(\psi)$ is the mean entropy of the state ψ :

$$\mathbf{s}(\psi) = -\lim_{\Lambda \uparrow} \mathbf{N}(\Lambda)^{-1} \,\psi(\log \varrho_{\psi}^{\Lambda})\,,\tag{1.3}$$