Commun. math. Phys. 37, 183—191 (1974) © by Springer-Verlag 1974

An Existence Proof for the Hartree-Fock Time-dependent Problem with Bounded Two-Body Interaction

A. Bove

Istituto di Fisica dell'Università di Bologna, Bologna, Italy

G. Da Prato

Istituto Matematico "G. Castelnuovo" dell'Università di Roma, Roma, Italy

G. Fano

Istituto di Fisica dell'Università di Bologna, Bologna, Italy

Received September 19, 1973; in revised form January 4, 1974

Abstract. Using fixed point theorems for local contractions in Banach spaces, an existence and uniqueness proof for the Hartree-Fock time-dependent problem is given in the case of a finite Fermi system interacting via a bounded two-body potential. The existence proof for the "strong" solution of the evolution problem is obtained under suitable conditions on the initial state.

1. Introduction

In general, starting from a quasi-free (or generalized-free) state ϱ of a finite or infinite Fermi system at the time $t = t_0$, the natural evolution of the system gives rise to a state ϱ_t which does not remain quasi-free for $t > t_0$, and trustworthy methods of successive approximations for solving the evolution problem except in trivial cases are not known. An approximate procedure for solving this problem is provided by the time-dependent Hartree-Fock theory, first obtained by Dirac [1] and afterwards generalized by Bogoliubov [2] and Valatin [3]. These equations can be obtained by considering the evolution of the oneparticle density matrix T and assuming that ϱ_t remains quasi-free in a given time interval. Perturbative solutions of such equations for superconducting systems have been studied by Di Castro and Young [4].

In spite of the simplicity of the approach, the equation of motion for the one-particle density matrix T is non-linear so that the existence problem is not easy even in the most simple physical cases. Written in