Commun. math. Phys. 37, 175—182 (1974) © by Springer-Verlag 1974

A Generalised Entropy Function

J. Naudts

Universiteit Leuven, Leuven, Belgium

Received December 6, 1973

Abstract. Let φ be a faithful normal semi-finite weight on a von Neumann algebra \mathcal{M} . Normal states on \mathcal{M} almost majorised by this weight are defined. For this class of states on \mathcal{M} a theorem is proved. Using this result we define entropy of normal states on \mathcal{M} and we show that this entropy function generalises the entropy both of classical and of quantum statistical mechanics.

1. Introduction

Let φ and ψ be two normal states on a von Neumann algebra \mathcal{M} . Suppose ψ is faithful. In Ref. [1] Dixmier introduces the notion of the state φ being almost majorised by the state ψ . He remarks that to any state φ almost majorised by ψ corresponds a closable operator affiliated with $\pi_{\psi}(\mathcal{M})'$, where π_{ψ} is the *-representation of \mathcal{M} associated with ψ by the G.N.S.-construction.

We define when a normal state φ on \mathcal{M} is almost majorised by a faithful normal semi-finite weight ψ on \mathcal{M} .

Using some results of Perdrizet [2], we show that with any state φ almost majorised by the weight ψ can be associated in a unique way a positive self-adjoint operator affiliated with $\pi_w(\mathcal{M})'$.

This result is used to define a generalised entropy function. The phase space of a system in classical statistical mechanics is a measure space M, v. The measure v gives the a priori probability of the points of M. The macroscopic states of the system are described by positive normalised measures μ on M which are absolutely continuous with respect to the measure v. To each such measure μ corresponds a positive integrable function f on M which satisfies $\int f dv = 1$ and $d\mu = f dv$. These functions f are called density functions and the entropy of the measure μ is given by the expression

$$S(\mu) = -\int f \log f \, d\nu \, .$$

Let \mathscr{H} be the Hilbert space of wave functions of a quantum mechanical system. In many cases the statistical states of the system are described by the normal states on the space $\mathscr{B}(\mathscr{H})$ of all bounded linear operators on \mathscr{H} . To each normal state ψ on $\mathscr{B}(\mathscr{H})$ corresponds a unique density