Commun. math. Phys. 37, 63—81 (1974) © by Springer-Verlag 1974

Feynman Path Integrals

I. Linear and Affine Techniques II. The Feynman-Green Function

Cécile DeWitt-Morette*

Department of Astronomy and Center for Relativity, University of Texas at Austin, Austin, Texas, USA

Received August 27, 1973; in revised form January 31, 1974

Abstract. Path integrals techniques are derived from a new definition [1] of Feynman path integrals. These techniques are used to establish that Feynman-Green functions for a given physical system are covariances of pseudomeasures suitable for its path integrals. The variance of a pseudomeasure is a more versatile tool than the Feynman-Green function it defines.

Contents

- I. Introduction. Feynman Space
- II. Notations. Basic Definitions and Properties
 - 1. Feynman integrals on \mathscr{C}_{-}
 - 2. Continuous linear and affine mappings
- III. Paths with Given Boundary Values
 - 1. Measures on \mathbb{R}^n
 - 2. Path integrals on \mathscr{C}^{ab}
 - 3. Canonical measure on \mathcal{H}
- IV. The Feynman-Green Function
 - 1. Introduction
 - 2. Definitions
 - 3. The Feynman-Green function as a covariance
 - 4. The Uhlenbeck-Ornstein approximation
 - 5. The white noise approximation
- V. Covariances in Quantum Mechanics
 - 1. Advanced and retarded "Green" functions
 - 2. Van Vleck determinant
 - 3. Uncertainty principle
- VI. The Diagram Technique
 - 1. Linear continuous potentials
 - 2. Non-linear potentials

VII. Conclusion. Variances versus Green Functions.

^{*} This work has been supported in part by a NATO Research Grant and by a National Science Foundation Grant.