Commun. math. Phys. 37, 19—28 (1974) © by Springer-Verlag 1974

Construction of a Strictly Renormalizable Effective Lagrangian for the Massive Abelian Higgs Model

O. Piguet

CERN, Geneva, Switzerland

Received January 25, 1974

Abstract. It is shown, using the BPHZ renormalization program and Zimmermann's normal product algorithm, that a strictly renormalizable effective Lagrangian for the Abelian massive Higgs model does exist: Ward identities are fulfilled, and normalization conditions, defining a theory in an indefinite metric Fock space, may be implemented.

1. Introduction

A number of examples of renormalizable Lagrangian models involving symmetry breaking [1-3] have been recently formulated, in versions which do not make use of any symmetric regularization procedure [4-7]. The basic tool is the so-called "normal product algorithm" (NPA) due to Zimmermann [8], which provides a cut-off free formulation of the BPH renormalization procedure.

For models in which symmetric mass parameters do not vanish, there are two alternative ways of using the NPA: one which respects the superrenormalizibility of the non-symmetric couplings [6, 9] and which we shall call, according to Schroer's terminology, "soft quantization", and another one, the "hard quantization", which treats all couplings as having power index 4 [4, 5]. These two methods yield identical Green's functions, according to an equivalence theorem [10, 6]. The first approach meets, however, difficulties in cases where some symmetric mass parameters have to vanish, whereas the second method is applicable to all cases – and only meets difficulties in principle when some renormalized masses vanish.

Recently, Lowenstein, Weinstein and Zimmermann [6] have formulated the soft renormalization method for the massive Abelian Higgs-Kibble model in the Stueckelberg gauge [11] (massive QED of the σ model). In this case, the equivalence theorem [6, 10] ensures that the hard renormalization procedure exists. It turns out, however, that a direct formulation of this hard renormalization is not completely trivial, which is the motivation of this paper.