Commun. math. Phys. 31, 291—294 (1973) © by Springer-Verlag 1973

A Continuity Property of the Entropy Density for Spin Lattice Systems

M. Fannes*

Universiteit Leuven, Belgium

Received December 15, 1972

Abstract. The entropy density of spin lattice systems is known to be a weak^{\star} upper semi-continuous functional on the set of the lattice invariant states. (It is even weak^{\star} discontinuous.) However we prove here that it is continuous with respect to the norm topology on those states.

I. Preliminaries

We consider a lattice \mathbb{Z}^d of N spin states per lattice site. By $\Lambda \subset \mathbb{Z}^d$ we will always mean a non-empty finite volume and by $V(\Lambda)$ the number of points in it.

To $\Lambda \subset \mathbb{Z}^d$ we associate the local algebra \mathscr{A}_{Λ} of observables:

$$\mathcal{A}_A = \mathcal{B}(\mathcal{H}_A)$$
 where $\mathcal{H}_A = \bigotimes_{i \in A} \mathcal{H}_i$ and each \mathcal{H}_i

is an isomorphic copy of the N-dimensional Hilbert space \mathbb{C}^N . For $\Lambda_1 \subset \Lambda_2$ we trivially get an isometric embedding of \mathscr{A}_{Λ_1} in \mathscr{A}_{Λ_2} which maps A into $A \otimes \mathbb{1}_{\Lambda_2 \setminus \Lambda_1}$. This allows us to construct the C*-algebra \mathscr{A} of quasilocal observables:

$$\mathscr{A} = \overline{\bigcup_{\Lambda \in \mathbb{Z}^d} \mathscr{A}_\Lambda}^n.$$

The natural translation mappings $\tau_x : \mathscr{A}_A \to \mathscr{A}_{A+x}$, $x \in \mathbb{Z}^d$ extend to a group $\{\tau_x | x \in \mathbb{Z}^d\}$ of automorphisms of \mathscr{A} . A state ω on \mathscr{A} is called lattice invariant if $\omega \circ \tau_x = \omega$ for all $x \in \mathbb{Z}^d$. Let \mathscr{E} denote the set of all lattice invariant states on \mathscr{A} .

For each state ω on \mathscr{A} and for each $A \in \mathbb{Z}^d$ there exists a unique density matrix $\varrho_A \in \mathscr{B}(\mathscr{H}_A)$ such that $\forall A \in \mathscr{A}_A \ \omega(A) = \operatorname{Tr} \varrho_A A$.

The local entropy density of the state ω is given by

$$s_A(\omega) = -\frac{1}{V(\Lambda)} \operatorname{Tr} \varrho_A \log \varrho_A.$$

^{*} Aspirant van het Belgisch N.F.W.O.