Commun. math. Phys. 31, 83–112 (1973) © by Springer-Verlag 1973

Axioms for Euclidean Green's Functions

Konrad Osterwalder* and Robert Schrader**

Lyman Laboratory of Physics, Harvard University, Cambridge, Mass. USA

Received December 18, 1972

Abstract. We establish necessary and sufficient conditions for Euclidean Green's functions to define a unique Wightman field theory.

Contents

1	Introduction
2.	Test Functions and Distributions
3.	The Axioms, Main Theorems
4.	Theorem $E \rightarrow R$
	4.1. Construction of the Wightman Distributions
	4.2. Lorentz Covariance and Spectrum Condition
	4.3. Positivity
	4.4. Cluster Property
	4.5. Locality
5.	Theorem $\mathbf{R} \rightarrow \mathbf{E}$
6.	Arbitrary Spinor Fields
7.	Application
8.	Technicalities

1. Introduction

In a relativistic quantum field theory the indefinite metric of Minkowski space causes many problems which could be avoided by replacing the time t by it or the energy E by iE, thereby passing from Minkowski space to Euclidean space. This idea was first used by Dyson [3] in perturbation theory. He continued the Feynman integrands analytically to imaginary energies in order to move the paths of integration away from the mass shell singularities of the causal propagators. Schwinger [21, 22] studied the analytic continuation of time ordered

^{*} Supported by the National Science Foundation under grant GP 31239X.

^{**} Supported in part by the Air Force Office of Scientific Research, contract AF 44620-70-C-0030.