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Abstract. We show that the non-relativistic quantum mechanical n-body Hamil-
tonians T(k) = T + kVand T, the free particle Hamiltonian, are unitarily equivalent in the
center of mass system, i.e., T(k) — W+{k) TW±(k)~x for k sufficiently small and real.

V = £ Kf, a sum of real pair potentials, Vιf depending on the relative coordinate

XiE R3 of the pair i, where Vt is required to behave like |x,Γ 2~ ε as |x,|->oo and like |x,Γ 2 + c

as |JC£| —>0. T(k) is the self-adjoint operator associated with the form sum T + kV There are
no smoothness requirements imposed on the Vv Furthermore W±(k) = s-lime l T ( λ ) re~ l T ί

t->±OO

are the wave operators of time dependent scattering theory and are unitary. This result gives
a quantitative form of the intuitive argument based on the Heisenberg uncertainty principle
that a certain minimum potential well depth and range is needed before a bound state can
be formed. This is the best possible long range behavior in the sense that iίkV^ Cι\xi\~~b,
0 < b S 2 for |xf| > Rt(0 < Rt < oo) and all Ci are negative then T(k) has discrete eigenvalues
and W+(k) are not unitary.

0. Introduction

In this article we treat the scattering and spectral problem for an
rc-body system in non-relativistic quantum mechanics with weak poten-
tials. We show that the method of Kato [1] used to show asymptotic
completeness and unitarity of the wave operators for weak potentials in
the two-body case can be applied to obtain similar results in the rc-body
case. More precisely we show that in the center of mass system Hubert
space H = L2{R3n-3) the self-adjoint operators T(k)=T + kV (the self-
adjoint operator associated with a form sum) and T (the free particle
Hamiltonian) are unitarily equivalent for sufficiently small, real k. The
potential V = £ Vt is a sum of pair potentials, Vh which are real-valued

i

measurable functions depending on the relative coordinates xt e R3 of
the pair i. Writing

^ H ^ Γ 2 , Bi = (ήgnVi)Ai,

the result follows from the crucial fact that the operators Ai{T—z)~ιBJ
admit bounded analytic extensions for ImzφO, the bound being in-


