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Abstract. Spherical functions of the Lorentz group with respect to the horyspheric
subgroup are derived and their relation to Gelfand's homogeneous functions are discussed.

Introduction

There exists a number of homogeneous spaces whose group of
motion may serve for the definition of the Lorentz group. Of these
homogeneous spaces the most familiar is the three dimensional hyper-
boloid. It has turned out, however, that in certain respects it is expedient
to treat the Lorentz group as a group of motion of the two-(complex)
dimensional complex sphere S2 = S^ + S2

2 + S3

2. Namely, it has been
pointed out by H. Joos and R. Schrader [1] and by M. Huszar and
J. Smorodinsky [2] that if the Lorentz group is considered in this spirit,
matrix elements of its unitary representation take a rather simple form.

A three dimensional complex vector S is the self-dual part of the

Lorentz covariant antisymmetric tensor 5μv, i.e. Sk = SOk + -w-^kimβim^

(fe, /, m = 1, 2, 3). Since the real and imaginary part of S transform like the
electric and magnetic field, respectively, the in variance of S2 ~ (E + i B)2

under proper Lorentz transformations is evident. And conversely, it can
be proved [3] that the connected part of three dimensional complex
rotation group is isomorphic to the proper Lorentz group.

1. Little Groups on the Complex Sphere of Zero and Non-zero Radius

Let us associate to a three dimensional complex vector S = (Su S2, S3)
I S S — ίS \

the matrix S = 3 x 2 . Under g e SL(2, C) S transforms as
\b + ιb —S3 j

* On leave of absence from the Central Research Institute for Physics, Budapest,
Hungary.


