Correlations between Eigenvalues of a Random Matrix

Freeman J. Dyson
Institute for Advanced Study, Princeton, N. J., USA

Received August 3, 1970

Abstract

Exact analytical expressıons are found for the joint probability distrıbution functions of n eigenvalues belonging to a random Hermitian matrix of order N, where n is any integer and $N \rightarrow \infty$. The distribution functions, like those obtained earlier for $n=2$, involve only trigonometrical functions of the eigenvaiue differences.

I. Statement of Results

A finite stretch of eigenvalues $E_{1}, E_{2}, \ldots, E_{r}$ of a random Hermitian matrix H of order $N \gg r$ has a well-defined statistical behavior in the limit as $N \rightarrow \infty$. A convenient way to discuss this behavior is to relate the eigenvalues E_{j} to the angles θ_{j} belonging to a certain Circular Ensemble $[1,2]$. If D is the mean level-spacing of the eigenvalue series, we write

$$
\begin{equation*}
\theta_{j}=\frac{2 \pi}{N D} E_{j}, \quad j=1, \ldots, r, \tag{1.1}
\end{equation*}
$$

and take for the complete series of angles $\left(\theta_{1}, \ldots, \theta_{N}\right)$ the probability distribution

$$
\begin{equation*}
Q_{N \beta}\left(\theta_{1}, \ldots, \theta_{N}\right)=C_{N \beta} \prod_{j<k} \mid e^{i \theta_{l}}-e^{i \theta_{k} \mid \beta}, \tag{1.2}
\end{equation*}
$$

where $\beta=1,2$ or 4 . The case $\beta=1$ applies to the usual physical situation in which H is real and symmetric, in particular when H is invariant under time-reflection and under space-rotations. The case $\beta=2$ would apply when H is complex Hermitian, i.e. when there is no time-reflection invariance. The case $\beta=4$ would apply when H is invariant under timereflection, without any rotation-invariance, for a system with halfinteger spin. Until now no interesting physical examples have been found of the cases $\beta=2$ and 4 . The case $\beta=1$ has been extensively studied in connection with the statistics of neutron capture levels in heavy nuclei [3-6].

