States and Automorphism Groups of Operator Algebras

RICHARD H. HERMAN* and MASAMICHI TAKESAKI

University of California, Los Angeles, USA

Received April 15, 1970

Abstract. Suppose that a group of automorphisms of a von Neumann algebra M, fixes the center elementwise. We show that if this group commutes with the modular (KMS) automorphism group associated with a normal faithful state on M, then this state is left invariant by the group of automorphisms. As a result we obtain a "noncommutative" ergodic theorem. The discrete spectrum of an abelian unitary group acting as automorphisms of M is completely characterized by elements in M. We discuss the KMS condition on the CAR algebra with respect to quasi-free automorphisms and gauge invariant generalized free states. We also obtain a necessary and sufficient condition for the CAR algebra and a quasi-free automorphism group to be η -abelian.

Introduction

Let A be a C*-algebra, σ_t a one-parameter automorphism group of A, and φ a σ_t -invariant state on A. The state φ is said to satisfy the Kubo-Martin-Schwinger (KMS) boundary condition for $\beta > 0$ if to each $x, y \in A$, there corresponds a function F(z) holomorphic in the strip: $0 < \text{Im } z < \beta$ and bounded on $0 \leq \text{Im } z \leq \beta$ with boundary values

$$F(t) = \varphi(\sigma_t(x) y)$$
 and $F(t + i\beta) = \varphi(y\sigma_t(x))$.

This condition was first introduced into the "algebraic approach" in [5]. Since that time a great deal of work has been done on the boundary condition. We refer the reader to references [1, 6, 7, 9, 21].

The KMS condition seems to say a good deal about the structure of the algebra involved. For instance it was shown in [17] using Tomita's theory [20] that to every faithful normal state ψ on a von Neumann algebra M there exists a unique one-parameter automorphism group (the modular automorphism group) σ_t^{ψ} satisfying the KMS condition for $\beta = 1$. The structure link here is that M is semi-finite if and only if σ_t^{ψ} is inner [17]. More recently in [18] it was shown that if one has a β -KMS state, ψ , and a γ -KMS state, φ , on a C^* -algebra A, $\beta \pm \gamma$, then the corresponding representations π_{φ} and π_{ψ} are disjoint, provided one representation is of type III.

^{*} The research of R. Herman was supported in part by NSF Grant GP-11475.