Commun. math. Phys. 17, 261—321 (1970) © by Springer-Verlag 1970

Lorentz Covariance of the $\lambda(\varphi^4)_2$ Quantum Field Theory

JOHN T. CANNON*

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Mass.

ARTHUR M. JAFFE**

Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts

Received December 15, 1969

Abstract. We prove that the $\lambda(\varphi^4)_2$ quantum field theory model is Lorentz covariant, and that the corresponding theory of bounded observables satisfies all the Haag-Kastler axioms. For each Poincaré transformation $\{a, A\}$ and each bounded region **B** of Minkowski space we construct a unitary operator U which correctly transforms the field bilinear forms: $U\varphi(x, t) U^* = \varphi(\{a, A\} (x, t))$, for $(x, t) \in \mathbf{B}$. We also consider the von Neumann algebra $\mathfrak{A}(\mathbf{B})$ of local observables, consisting of bounded functions of the field operators $\varphi(f) = \int \varphi(x, t) f(x, t) dx dt$, supp $f \in \mathbf{B}$. We define a *-isomorphism $\sigma_{(a,A)}: \mathfrak{A}(\mathbf{B}) \to \mathfrak{A}(\{a, A\} \mathbf{B})$ by setting $\sigma_{(a,A)}(A) = UAU^*$. The mapping $\{a, A\} \to \sigma_{(a,A)}$ is a representation of the Poincaré group by *-automorphisms of the normed algebra $\cup_{\mathbf{B}} \mathfrak{A}(\mathbf{B})$ of local observables.

Contents

1.	Introduction	262
	1.1 Discussion	262
	1.2 Notation	265
2.	Lorentz Covariance	267
	2.1 The Main Results	267
	2.2 Reduction of the Problem	269
3.	First Order Estimates	270
	3.1 The Basic Inequalities	270
	3.2 The Energy Momentum Density	275
4.	Second Order Estimates	283
5.	Self Adjointness and a Fourth Order Estimate	292
6.	Local Lorentz Transformations	297

* Supported in part by the US Air Force Office of Scientific Research, Contract No. 44620-67-C-0029.

** Alfred P. Sloan Foundation Fellow. Supported in part by the US Air Force Office of Scientific Research, Contract F 44620-70-C-0030.

19 Commun. math. Phys., Vol. 17