Attempt of an Axiomatic Foundation of Quantum Mechanics and More General Theories V*

Peter Stolz
Institut für theoretische Physik (I) der Universität Marburg
Received October 7, 1968

Abstract

We continue here the series of papers treated by Ludwig in [1-5]. Using some results of DäHs in [6], we point out that each irreducible solution of the axiomatic scheme set up in [5] is represented by a system of positive-semidefinite operator pairs of a finite-dimensional Hilbert-space over the real, complex or quaternionic numbers.

I. Introduction

Following Mackey's [7] general outline of axiomatic quantum theory, MacLaren [11] and Zierler [8] or Piron [12] and Jauch [13] introduce two final axioms concerning the topological structure of the lattice G of questions (also called propositions or decision effects). This means strictly speaking that G and each sublattice of G is a compact set and that the set $A(G)$ of all atoms of G is connected. These axioms characterize the division ring appearing in the representation theorem for G.

In his axiomatic scheme (cited in [5]), Ludwig starts from a pair of sets (K, \hat{L}) imbedded in a dual pair (B, B^{\prime}) of finite-dimensional real Banach-spaces. Hence the lattice G of decision effects, being the set of all extreme points of \hat{L}, carries a topological structure inherited from B^{\prime}.

In [5] it was already shown that the first of the axioms mentioned above is a theorem in this exposition.

The purpose of this paper is to show that also the second axiom can be deduced. Furthermore, the following representation theorem for the system (K, \hat{L}) will be shown.

Theorems 20, 21. If the dimension of the finite-dimensional Banachspaces B, B^{\prime} is large enough, then there holds:

1. Every irreducible solution of the axiomatic system (K, \hat{L}) is isomorphic to a system ($\mathscr{K}, \hat{\mathscr{L}})$ of linear operators of a finite-dimensional Hilbert-space H.
2. The division ring of H is isomorphic to either the real, the complex or the quaternionic number ring.
3. The set \mathscr{K} consists of all positive-semidefinite operators V with $\boldsymbol{T r} V=1$.
[^0]
[^0]: * This paper is an abridged version of the author's thesis presented to the Marburg University and written under the direction of Prof. G. Ludwig.

