On Weak and Monotone σ -Closures of C*-Algebras

Gert Kjaergård Pedersen

Institute of Mathematics, University of Copenhagen

Received July 15, 1968

Abstract. It is proved that the monotone σ -closure of the self-adjoint part of any C^* -algebra \mathcal{A} is the self-adjoint part of a C^* -algebra \mathcal{B} . If \mathcal{A} is of type I it is proved that \mathcal{B} is weakly σ -closed, i.e. \mathcal{B} is a Σ^* -algebra. The physical importance of Σ^* -algebras was explained in [1] and [7].

We recall that the class of bounded real Baire functions $\mathscr{B}^{R}(X)$ on a locally compact Hausdorff space X is defined as the monotone σ -closure of $C_{0}^{R}(X)$. It is immediately verified that $\mathscr{B}^{R}(X)$ is closed under pointwise limits of sequences hence $\mathscr{B}^{R}(X)$ is also the weak (pointwise) σ -closure of $C_{0}^{R}(X)$.

Regarding a C^* -algebra A as the non-commutative analogue of some $C_0(X)$ we may for a convenient representation of A as operators on a Hilbert space H form the monotone σ -closure \mathscr{B}_A^R of A^R in B(H). This class of Baire operators was introduced in [5] by R. V. KADISON in order to give measure-theoretic conditions on a representation between two concrete C^* -algebras to have a normal extension. His result together with those of [6] seem to indicate that \mathscr{B}_A^R is able to take over the rôle played by the Baire functions in commutative theory.

Recently E. B. DAVIES in [1], [2] and [3] has considered instead the weak σ -closure of A and has outlined an interesting theory of Σ^* -algebras i.e. C^* -algebras which are weakly σ -closed. Since for non-commutative C^* -algebras one cannot use lattice arguments it is no more an easy matter to determine whether the weak and monotone σ -closure of A^R coincide. We prove in this paper that such is indeed the case if A is of type I. Unfortunately the proof will not be applicable for other types but since we are able to show in general that \mathscr{P}^R_A is the self-adjoint part of a C^* -algebra we feel rather optimistic that the result is true in general i.e. that $\mathscr{P}^R_A + i \mathscr{P}^R_A$ is a Σ^* -algebra.

We shall use [4] as a standard reference on notations and terminology. In particular for a C^* -algebra A we shall write A'' for the enveloping von Neumann algebra of A in its universal representation. When no confusion may arise we shall drop the subscript and write \mathscr{B}^R for the monotone σ -closure of A^R in A''.

Theorem 1. \mathscr{B}^R is the self-adjoint part of a C*-algebra.