On the Converse of the Reeh-Schlieder Theorem

H. J. Borchers

Institut für Theoretische Physik, Universität Göttingen

Received June 26, 1968

Abstract. It will be shown that the weak additivity-property is not only sufficient but also necessary for the derivation of the Reeh-Schlieder theorem.

I. Introduction and Results

Many results in quantum field theory which have been derived so far are based directly or indirectly on the Reeh-Schlieder theorem [1]. The central role of this theorem makes it worthwhile to give it separate consideration.

The problem can be formulated as follows. Let \mathscr{A} be a v. Neumann-algebra acting in a Hilbert space \mathscr{H} and $\mathscr{B} \subset \mathscr{A}$ a sub v. Neumann-algebra. Do there exists vectors $x \in \mathscr{H}$ such that $\overline{\mathscr{B}x} = \overline{\mathscr{A}x}$? If yes, how can one characterize such vectors? This problem will hardly be soluable in full generality but there exists a class of v. Neumann algebras for which the answer is partly known. This class is of particular interest for physics.

Here we have a v. Neumann algebra \mathscr{A} together with a *n*-parametric group G of normal automorphisms which are implemented by a strongly continuous unitary representation of G having its spectrum in a proper closed cone.

We consider G as the additive group of \mathbb{R}^n and denote by U(g) its representation in \mathscr{H} . A vector $x \in \mathscr{H}$ is called analytic for if U(g)x has an analytic extension into a full neighbourhood of the origin in \mathbb{C}^n .

Let \mathcal{N} be any open neighbourhood of the origin in \mathbb{R}^n and \mathscr{B} a subalgebra of \mathscr{A} then we denote by $(\mathscr{B}, \mathscr{N})$ the v. Neumann algebra generated by $\{U(g) \,\mathscr{B} \, U(g^{-1}); g \in \mathscr{N}\}.$

With these notations we get:

1. Theorem (Reeh-Schlieder). With \mathscr{A} , G and U(g), $g \in G$ as described above, assume $\mathscr{B} \subset \mathscr{A}$ is a sub v. Neumann algebra of \mathscr{A} such that

$$(\mathscr{B},\,G)=\left\{\bigcup_{g\,\in\,G}\,U\left(g\right)\,\mathscr{B}\,U\left(g^{-1}\right)\right\}^{\prime\prime}=\mathscr{A}\;.$$

Then for any vector $x \in \mathcal{H}$ which is analytic for U(g), and for any open neighbourhood \mathcal{N} of the origin in G, we have the relation

$$(\mathcal{B}, \mathcal{N})x = \mathcal{A}x$$
.