Statistical Mechanics of Quantum Spin Systems. III

OSCAR E. LANFORD III

I. H. E. S., Bures-sur-Yvette

and

DEREK W. ROBINSON CERN — Geneva

Received May 10, 1968

Abstract. In the algebraic formulation the thermodynamic pressure, or free energy, of a spin system is a convex continuous function P defined on a Banach space \mathfrak{B} of translationally invariant interactions. We prove that each tangent functional to the graph of P defines a set of translationally invariant thermodynamic expectation values. More precisely each tangent functional defines a translationally invariant state over a suitably chosen algebra \mathfrak{A} of observables, i. e., an equilibrium state. Properties of the set of equilibrium states are analysed and it is shown that they form a dense set in the set of all invariant states over \mathfrak{A} . With suitable restrictions on the interactions, each equilibrium state is invariant under time-translations and satisfies the Kubo-Martin-Schwinger boundary condition. Finally we demonstrate that the mean entropy is invariant under timetranslations.

1. Introduction

The purpose of this paper is to continue the general analysis of quantum spin systems which was presented in [1, 2] and [3]. In [2] we gave an algebraic formulation of the mathematical framework of quantum spin systems and showed that the thermodynamic pressure, or free energy, P could be considered as a convex continuous function defined on a Banach space of translationally invariant interactions. Further it was shown that the pressure also served as a generating functional of equilibrium states in the sense that the functional derivatives, i.e., the tangent functionals to the graph of P, determined translationally invariant states over a suitably chosen C^* algebra \mathfrak{A} of observables. The states introduced in this manner play the same role as the more conventionally used correlation functions or thermodynamic expectation values. The results of [2] were, however, incomplete in the sense that we could only rigorously establish that P generated equilibrium states under certain restrictive conditions. In particular it was shown that if the interaction Φ were such that the tangent functional to the graph of P at Φ was unique then this tangent functional determined an equilibrium state. It was further shown that the equilibrium states obtained under such conditions described pure thermodynamic phases. This latter result