On the Continuity of Automorphic Representations of Groups

JOHAN F. AARNES* University of Oslo, Norway

Received October 15, 1967

Abstract. Given a weakly continuous automorphic representation α of a group G on a concrete C^* -algebra \mathfrak{A} , we show that a mild joint continuity condition makes it possible to extend α to a weakly continuous representation of G on the weak closure of \mathfrak{A} . If G is locally compact and \mathfrak{A} is a von Neumann algebra, this condition is automatically satisfied.

Introduction

Let G be a topological group, and let \mathfrak{A} be a C^* -algebra with the identity operating on a Hilbert-space H. Let $\alpha: G \to \operatorname{aut}(\mathfrak{A}) = \operatorname{the group}$ of *-automorphisms of \mathfrak{A} , be a homomorphism, and let α_g denote image of $g \in G$ under α . We require that the map

$$A: (g, x)
ightarrow lpha_{g}(x) ; \quad g \in G , \quad x \in \mathfrak{A}$$

of $G \times \mathfrak{A}$ into \mathfrak{A} is separately continuous when restricted to $G \times \mathfrak{A}_1$, and \mathfrak{A}_1 = the unit sphere of \mathfrak{A} , is given the weak operator topology. In this case we say that α is an automorphic representation of G on \mathfrak{A} .

Since $(\alpha_g)^{-1} = \alpha_{g^{-1}}$, it follows in particular that each α_g ; $g \in G$, is weakly bi-continuous on the unit sphere of \mathfrak{A} , and therefore has an extension to $\overline{\mathfrak{A}}$ = the weak closure of \mathfrak{A} on H, as a *-automorphism which we again denote by α_g ([4], remark 2.2.3). Each α_g is weakly bicontinuous on the unit sphere of $\overline{\mathfrak{A}}$, and the map $\overline{\mathfrak{a}}: G \to \operatorname{aut}(\overline{\mathfrak{A}})$ obtained this way is a homomorphism. It is a question of some interest to know under what conditions $\overline{\mathfrak{a}}$ is an automorphic representation of G on $\overline{\mathfrak{A}}$, i.e., when the map $g \to \alpha_g(x)$; $x \in \overline{\mathfrak{A}}_1$, is weakly continuous. For a motivation, see f.i. DELL'ANTONIO [2] or KADISON [5]. It turns out that a mild *joint continuity* condition on the map A is sufficient, and that this condition is automatically satisfied if \mathfrak{A} is a von Neumann algebra.

I. Extension of Automorphic Representations

We say that the automorphic representation α of G on \mathfrak{A} is *extendable*, of $\overline{\alpha}$ is an automorphic representation of G on $\overline{\mathfrak{A}}$. Clearly, several other topologies on \mathfrak{A} were possible in the definition of an automorphic rep-

^{*} Research supported by NSF.