A Note on the Decrease of Truncated Wightman Functions for Large Space-like Separation of the Arguments

K. Pohlmeyer

II. Institut für Theoretische Physik der Universität Hamburg

Received November 27, 1967

Abstract. The truncated Wightman functions cannot decrease arbitrarily fast for large space-like separation of the arguments. For certain configurations they can fall off at most exponentially.

Upper bounds on the decrease of truncated Wightman functions were established a long time ago [1-5]. For instance, for a relativistic quantum field theory of a self-interacting neutral, scalar field A(x) H. Araki [2] (compare the footnote in [5]) proved the following theorem: Under the assumptions of a) Lorentz invariance, b) temperedness of the Wightman functions, c) the existence of a lowest non-zero mass, the truncated vacuum expectation value (TVEV)

$$\langle A(x_0) \dots A(x_n) \rangle^T$$

vanishes at least exponentially for $x_{i-1} - x_i = \xi_i + \lambda \xi_i'$ i = 1, ..., n where $\xi_i + \lambda \xi_i'$ should be a Jost point for sufficiently large λ and $\lambda \to +\infty$, ξ_i , ξ_i' fixed (with at least one $\xi_i' \neq 0$).

Here we want to point out that a *lower* bound on the decrease of the TVEV for similar configurations can be obtained as well. We do not assume locality or the existence of a lowest non-zero mass.

To begin with, let us consider the 2-point function. Lorentz invariance, temperedness and positive definiteness imply the well-known Källén-Lehmann representation

$$\left\langle A\left(x_{0}\right)A\left(x_{1}\right)\right\rangle ^{T}=\left\langle A\left(x_{0}\right)A\left(x_{1}\right)\right\rangle =i\int\limits_{0}^{\infty}d\varrho\left(\mu\right)\varDelta_{\mu}^{+}\left(x_{0}-x_{1}\right),$$

 $\varrho(\mu)$ a positive tempered measure

$$\sim \frac{\text{const}}{-(x_0 - x_1)^2}$$

$$\left(\text{or } \sim \frac{\sqrt{m}}{2^{5/2} \, \pi^{3/2} \, \sqrt{-(x_0 - x_1)^{2^{3/2}}}} \exp\left\{-\, m \, \sqrt{-\, (x_0 - x_1)^2}\right\} \text{ in case of the existence of a lowest non-zero mass } m \text{ in the theory}\right).$$

Next, we turn to the 3-point function. It is analytic in the "extended tube" $\mathcal{F}'_{0,1,2}$ the boundaries of which are explicitly known in terms of the invariants [6]. Consider

$$W_{2}^{T}\left(x_{0},\,x_{1},\,x_{2}\right)=\left\langle A\left(x_{0}\right)\,A\left(x_{1}\right)\,A\left(x_{2}\right)\right\rangle ^{T}$$

19 Commun. math. Phys., Vol. 7