Algebras of Observables with Continuous Representations of Symmetry Groups*

KARL KRAUS

Institut für Theoretische Physik (I) der Philipps-Universität Marburg/Lahn, Germany

Received December 18, 1966/August 30, 1967

Abstract. Concrete C^* -algebras, interpreted physically as algebras of observables, are defined for quantum mechanics and local quantum field theory.

A quantum mechanical system is characterized formally by a continuous unitary representation up to a factor U_g of a symmetry group \mathfrak{S} in Hilbert space \mathfrak{H} and a von Neumann algebra \mathfrak{R} on \mathfrak{H} invariant with respect to U_g . The set \mathfrak{A} of all operators $X \in \mathfrak{R}$ such that $U_g X U_g^{-1}$, as a function of $g \in \mathfrak{S}$, is continuous with respect to the uniform operator topology, is a C^* -algebra called the algebra of observables. The algebra \mathfrak{R} is shown to be the weak (or strong) closure of \mathfrak{A} .

In field theory, a unitary representation up to a factor $U(a, \Lambda)$ of the proper inhomogeneous Lorentz group \mathfrak{S} and local von Neumann algebras $\mathfrak{R}_{\mathcal{C}}$ for finite open space-time regions C are assumed, with the usual transformation properties of $\mathfrak{R}_{\mathcal{C}}$ under $U(a, \Lambda)$. The collection of all $X \in \mathfrak{R}_{\mathcal{C}}$ giving uniformly continuous functions $U(a, \Lambda) X U^{-1}(a, \Lambda)$ on \mathfrak{S} is then a local C^* -algebra $\mathfrak{A}_{\mathcal{C}}$, called the algebra of local observables. The algebra $\mathfrak{A}_{\mathcal{C}}$ for all C is called algebra of quasilocal observables (or quasilocal algebra).

In either case, the group \mathfrak{S} is represented by automorphisms \mathbf{V}_{σ} resp. $\mathbf{V}(a, \Lambda)$ — with $\mathbf{V}_{\sigma}X = U_{\sigma}XU_{\sigma}^{-1}$ — of the C*-algebra \mathfrak{A} , and this is a strongly continuous representation of \mathfrak{S} on the Banach space \mathfrak{A} . Conditions for $\mathbf{V}(a, \Lambda)$ can then be formulated which correspond to the usual spectrum condition for $U(a, \Lambda)$ in field theory.

1. Introduction and Summary

In quantum mechanics, physical quantities (observables) are represented by Hermitean operators A on a certain Hilbert space \mathfrak{H} . If moreover these observables are suitably selected, they can be represented by bounded operators A. Implicitely or explicitely, most theoretical investigations also assume the inverse: Any bounded Hermitean operator A on \mathfrak{H} compatible with the superselection rules (i.e., commuting with all "superobservables") of the theory is supposed to represent a physical observable. The set of observables then coincides with the set of all Hermitean operators of a certain von Neumann algebra \mathfrak{R} . In field theory, the introduction of local von Neumann algebras \mathfrak{R}_C for all

^{*} Work supported in part by the Deutsche Forschungsgemeinschaft.