The Energy Momentum Spectrum of Quantum Fields

RICHARD V. KADISON* University of Pennsylvania Philadelphia, Pennsylvania, USA

Received October 1, 1966

Abstract. It is proved, assuming Einstein causality, that the energy-momentum spectrum of a quantum field cannot be bounded. More is known under special assumptions [1, 4]. Our main concern is the method and general applicability of the result.

I. Introduction

The Haag-Araki formulation of local quantum field theory associates with open regions \mathcal{O} of Minkowski space-time \mathbb{R}^4 von Neumann algebras $\mathscr{R}(\mathcal{O})$ on a Hilbert space \mathscr{H} . The self-adjoint operators in $\mathscr{R}(\mathcal{O})$ correspond to the bounded observables of the field localized in the region \mathcal{O} of spacetime. The dynamics and relativistic invariance of the field are expressed in terms of a (strongly-continuous) unitary representation U of the Poincaré group G on \mathscr{H} in such a manner that $U(g) \mathscr{R}(\mathcal{O}) U(g)^{-1} = \mathscr{R}(g(\mathcal{O}))$, where $g(\mathcal{O})$ denotes the transform of the region \mathcal{O} by the (inhomogeneous) Lorentz transformation g of space-time. (This is *covariance* of U and \mathscr{R} .) Further assumptions are made — among them:

 $\{\mathscr{R}(\mathcal{O}) : \mathcal{O} \text{ open in } R^4\}$ and $\{\mathscr{R}(\mathcal{O}_s) : \{\mathcal{O}_s\}\)$ an open covering of $R^4\}$ both generate the same C^* -algebra \mathfrak{A} (the quasi-local algebra of (1) the system).

$$\mathscr{R}(\mathcal{O}_1) \subseteq \mathscr{R}(\mathcal{O}_2)'$$
 if \mathcal{O}_1 and \mathcal{O}_2 are space-like separated. (2)

$$\mathscr{R}(\mathscr{O}_{0}) \subseteq \mathscr{R}(\mathscr{O}) \quad \text{if} \quad \mathscr{O}_{0} \subseteq \mathscr{O} . \tag{3}$$

According to the theory of unitary representations of locally compact abelian groups (generalization of Stone's theorem) [3: p. 147] the restriction of U from G to the 4-translation group (the additive group of R^4) gives rise to a projection-valued measure E on the dual \hat{R}^4 of R^4 , this dual being identified with energy-momentum space, such that $U(a) = \int \exp(ia \cdot p) dE(p)$. Stone's theorem tells us that each of the one- \hat{R}^4

parameter unitary groups $t \to U(ta)$ has an infinitesimal generator P_a which is a (not necessarily bounded) self-adjoint operator on \mathscr{H} . If a is space-like P_a is the momentum observable conjugate to translation in the direction a. If a is a vector along the time axis, the generator H is

^{*} Research supported by ONR and NSF.