On the Number of Negative Eigenvalues for a Schrödinger Operator with Magnetic Field

Zhongwei Shen¹

Department of Mathematics, University of Kentucky, Lexington, KY 40506, USA E-mail: shenz@ms uky edu

Received: 29 February 1996/Accepted: 14 May 1996

Abstract: We consider the Schrödinger operator with magnetic field

$$H = \sum_{i=1}^{n} \left(\frac{1}{i} \frac{\partial}{\partial x_i} - a_i \right)^2 + V \quad \text{in } \mathbb{R}^n.$$

Under certain conditions on the magnetic field $\mathbf{B} = \text{curl } \mathbf{a}$, we generalize the Fefferman-Phong estimates (Bull. A. M. S. 9, 129-206 (1983)) on the number of negative eigenvalues for $-\Delta + V$ to the operator H. Upper and lower bounds are established. Our estimates incorporate the contribution from the magnetic field. The conditions on \mathbf{B} in particular are satisfied if the magnetic potentials $a_j(x)$ are polynomials.

Introduction

This paper concerns the Schrödinger operator with magnetic field:

$$H = H(\mathbf{a}, V) = \sum_{j=1}^{n} \left(\frac{1}{i} \frac{\partial}{\partial x_j} - a_j \right)^2 + V \quad \text{in } \mathbb{R}^n, \quad n \ge 3,$$
 (0.1)

where $i = \sqrt{-1}$, $V : \mathbb{R}^n \to \mathbb{R}$ is the electric potential and $\mathbf{a} : \mathbb{R}^n \to \mathbb{R}^n$ is the magnetic potential.

Let $N(\lambda, H)$ denote the number of eigenvalues (counting multiplicity) of H smaller than λ (or in general the dimension of the spectral projection for H corresponding to the interval $(-\infty, \lambda)$). In the case $\mathbf{a}(x) \equiv \mathbf{0}$, i.e., $H = H(\mathbf{0}, V) = -\Delta + V$, a basic theorem of Cwickel, Lieb and Rosenblum states that

$$N(\lambda, -\Delta + V) \le c_n |\{(x, \xi) \in \mathbb{R}^n \times \mathbb{R}^n : |\xi|^2 + V(x) < \lambda\}|. \tag{0.2}$$

See [Si2, p. 95]. Using a sharper form of the uncertainty principle, C. Fefferman and D.H. Phong were able to refine the classical estimate (0.2). Indeed, it was shown

¹ Supported in part by NSF Grant DMS-9596266