

Statistical Mechanics of the 2-Dimensional Focusing Nonlinear Schrödinger Equation

David C. Brydges¹, Gordon Slade²

¹ Department of Mathematics, University of Virginia, Charlottesville, VA 22903-3199, USA. E-mail: db5d@virginia.edu

² Department of Mathematics and Statistics, McMaster University, Hamilton, ON, Canada L8S 4K1. E-mail: slade@mcmaster.ca

Received: 4 March 1996/Accepted: 6 June 1996

Abstract: We study a natural construction of an invariant measure for the 2-dimensional periodic focusing nonlinear Schrödinger equation, with the critical cubic nonlinearity. We find that a phase transition occurs as the coupling constant defining the strength of the nonlinearity is increased, but that the natural construction, successful for the 1-dimensional case and for the 2-dimensional defocusing case, cannot produce an invariant measure. Our methods rely on an analysis of a statistical mechanical model closely related to the spherical model of Berlin and Kac.

1. Statement of Results

1.1. Invariant measures. The periodic nonlinear Schrödinger equation can be written

$$iu_t + \Delta u + \frac{1}{2} p\lambda |u|^{p-2} u = 0, \qquad (1.1)$$

where u = u(x, t) is complex-valued and x lies in the d-dimensional unit torus \mathbb{T}^d . The sign of the coupling constant λ is important for the behaviour of solutions to (1.1). In the defocusing case, corresponding to $\lambda < 0$, there are global existence results. In the focusing case, corresponding to $\lambda > 0$, for the problem on \mathbb{R}^d , there is a critical power $p_c = 2 + 4/d$ such that for $p < p_c$ there are global existence results while for $p > p_c$ there are finite-time blow-up results. Both behaviours can occur when $p = p_c$, depending on the value of λ and the initial value of $||u||_2$. These results [19] are for initial data in H_1 .

This paper is primarily concerned with the focusing case for d = 2 and $p = p_c = 4$, and more precisely, with the construction of invariant measures for (1.1). A natural approach to the construction of an invariant measure proceeds as follows. The L^2 -norm

$$\|u\|_{2}^{2} = \int_{\mathbb{T}^{d}} |u(x,t)|^{2} d^{d}x$$
(1.2)

and the Hamiltonian

$$H(u) = \|\nabla u\|_{2}^{2} - \lambda \|u\|_{p}^{p}$$
(1.3)