Large Deviations and the Distribution of Pre-images of Rational Maps

Mark Pollicott, Richard Sharp

Department of Mathematics, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom

Received: 1 February 1996/Accepted: 8 May 1996

Abstract: In this article we prove a large deviation result for the pre-images of a point in the Julia set of a rational mapping of the Riemann sphere. As a corollary, we deduce a convergence result for certain weighted averages of orbital measures, generalizing a result of Lyubich.

0. Introduction

Let $\hat{\mathbb{C}}$ denote the Riemann sphere and let $T:\hat{\mathbb{C}}\to\hat{\mathbb{C}}$ be a rational map of degree $d\geq 2$, say. Every point has d pre-images (counted according to their multiplicities). There is a well-known result of Lyubich which shows that for a point $x\in \mathbb{J}$ in the Julia set an evenly distributed weight on the set of d^n pre-images

$$S_n(x) = \{ y \in \hat{\mathbb{C}} : T^n y = x \}$$

converges (in the weak* topology) to a measure μ_0 as $n \to +\infty$ [4, 8]. The measure μ_0 is precisely the unique measure of maximal entropy for the map T [2, 5].

Since $T: \mathbb{J} \to \mathbb{J}$ is a continuous map on a compact metric space we can define the pressure of a continuous function $f: \mathbb{J} \to \mathbb{R}$ by

$$P(f) = \sup \{h(v) + \int f dv : v \text{ is a } T\text{-invariant probability}\}$$
,

where h(v) denotes the entropy of T with respect to v. An equilibrium state for f is a T-invariant probability μ realising this supremum.

Let \mathcal{M} denote the set of all probability measures on \mathbb{J} . We shall show the following stronger "large deviation" result on the pre-images of a point $x \in \mathbb{J}$.

Theorem 1. Let $f: \mathbb{J} \to \mathbb{R}$ be a Hölder continuous function such that $P(f) > \sup f$ and let μ be the unique equilibrium state for f. Let $x \in \mathbb{J}$. Then for any weak* open neighbourhood $\mathcal{U} \subset \mathcal{M}$ of μ we have that the weighted proportion of

The first author was supported by a Royal Society University Fellowship during part of this research.