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Abstract: Suppose that the integers are assigned i.i.d. random variables {ωx} (taking
values in the unit interval), which serve as an environment. This environment defines
a random walk {X^} (called a RWRE) which, when at x9 moves one step to the
right with probability ωx, and one step to the left with probability I — ωx. Solomon
(1975) determined the almost-sure asymptotic speed (= rate of escape) of a RWRE.
For certain environment distributions where the drifts 2ωx — I can take both positive
and negative values, we show that the chance of the RWRE deviating below this
speed has a polynomial rate of decay, and determine the exponent in this power
law; for environments which allow only positive and zero drifts, we show that these
large-deviation probabilities decay like exp(—Cw1/3). This differs sharply from the
rates derived by Greven and den-Hollander (1994) for large deviation probabilities
conditioned on the environment. As a by product we also provide precise tail and
moment estimates for the total population size in a Branching Process with Random
Environment.

1. Introduction

In this paper we consider the large deviations of the position of a nearest-neighbor
random walk on Z with site-dependent transition probabilities.

Let ω = (cox)X£z be an i.i.d. collection of (0, l)-valued random variables, with
marginal distribution α such that supp α C (0,1). For every fixed ω, let X = (Xn)n^o
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