Tail Estimates for One-Dimensional Random Walk in Random Environment

Amir Dembo ${ }^{1 . *}$, Yuval Peres ${ }^{2, * *}$, Ofer Zeitouni ${ }^{3, * * *}$
${ }^{1}$ Department of Mathematics and Department of Statistics, Stanford University, Stanford, CA 94305 and Department of Electrical Engineering, Technion, Israel Institute of Technology, Haifa 32000, ISRAEL.
${ }^{2}$ Department of Statistics, University of California, Berkeley, California 94720 and Institute of Mathematics, Hebrew University, Jerusalem.
E-mail: peres@math.huji.ac.il
${ }^{3}$ Department of Electrical Engineering, Technion, Israel Institute of Technology, Haifa 32000, ISRAEL.

Received: 15 November 1995/Accepted: 21 April 1996

Abstract

Suppose that the integers are assigned i.i.d. random variables $\left\{\omega_{x}\right\}$ (taking values in the unit interval), which serve as an environment. This environment defines a random walk $\left\{X_{k}\right\}$ (called a RWRE) which, when at x, moves one step to the right with probability ω_{x}, and one step to the left with probability $1-\omega_{x}$. Solomon (1975) determined the almost-sure asymptotic speed ($=$ rate of escape) of a RWRE. For certain environment distributions where the drifts $2 \omega_{x}-1$ can take both positive and negative values, we show that the chance of the RWRE deviating below this speed has a polynomial rate of decay, and determine the exponent in this power law; for environments which allow only positive and zero drifts, we show that these large-deviation probabilities decay like $\exp \left(-C n^{1 / 3}\right)$. This differs sharply from the rates derived by Greven and den-Hollander (1994) for large deviation probabilities conditioned on the environment. As a by product we also provide precise tail and moment estimates for the total population size in a Branching Process with Random Environment.

1. Introduction

In this paper we consider the large deviations of the position of a nearest-neighbor random walk on \mathbb{Z} with site-dependent transition probabilities.

Let $\omega=\left(\omega_{x}\right)_{x \in \mathbb{Z}}$ be an i.i.d. collection of $(0,1)$-valued random variables, with marginal distribution α such that supp $\alpha \subset(0,1)$. For every fixed ω, let $X=\left(X_{n}\right)_{n \geqq 0}$

[^0]
[^0]: * Partially supported by NSF DMS-9209712 and DMS-9403553 grants, by a US-ISRAEL BSF grant and by the S. and N. Grand research fund.
 ** Research partially supported by NSF grant \# DMS-9404391 and a Junior Faculty Fellowship from the Regents of the University of California.
 *** Partially supported by NSF grant \# DMS-9302709, by a US-Israel BSF grant and by the fund for promotion of research at the Technion.

