

Spectral Decomposition of Path Space in Solvable Lattice Model

Tomoyuki Arakawa, Tomoki Nakanishi, Kazuyuki Oshima, Akihiro Tsuchiya

Department of Mathematics, Nagoya University, Chikusa-ku, Nagoya 464-01, Japan. E-mail: tarakawa@math nagoya-u ac.jp, nakanishi@math nagoya-u.ac.jp, ooshima@math nagoya-u.ac.jp, tsuchiya@math.nagoya-u.ac jp

Received: 27 July 1995/Accepted: 15 February 1996

Abstract: We give the *spectral decomposition* of the path space of the $U_q(\widehat{sl}_2)$ vertex model with respect to the local energy functions. The result suggests the hidden Yangian module structure on the \widehat{sl}_2 level l integrable modules, which is consistent with the earlier work [1] in the level one case. Also we prove the fermionic character formula of the \widehat{sl}_2 level l integrable representations in consequence.

1. Introduction

In the last decade of investigation, various close relations between the solvable lattice model and the conformal field theory have been revealed (for example, [2-5]). The aim of this article is to point out a new interesting relation between the spectrum in the solvable lattice model and the hidden quantum symmetry in the conformal field theory.

Consider the higher spin vertex model associated with the l + 1 irreducible representation of $U_q(\hat{sl}_2)$ ([6,7]). It is well-known that the characters of the \hat{sl}_2 or $U_q(\hat{sl}_2)$ level l integrable representations $\mathscr{L}(k)$ can be calculated by using its *path* space $\mathscr{P}(k)$ ([2,8]). The energy of a path \vec{p} is given by the sum of a sequence of numbers $h(\vec{p}) = (h_1(\vec{p}), h_2(\vec{p}), \ldots)$ minus the ground state energy which depends on the corresponding boundary condition. Here $h_i(\vec{p})$ is the *i*th local energy determined from the i + 1th component of \vec{p} and its nearest neighbors by the local energy function. We propose the fact that the local energy functions not only play a combinatorial role, but also can be regarded as the $q \to 0$ limit of the local integrals of motion which commutes with the corner transfer matrix.

At q = 0, the energy of a path \vec{p} is essentially the eigenvalue of the logarithm of the corner transfer matrix on the one dimensional configuration space $\sum_{\vec{p} \in \mathscr{P}(k)} C\vec{p}$. Hence \vec{p} itself is the "eigenvector" of the corner transfer matrix, and at the same time it is a simultaneous "eigenvector" of the mutually commuting infinitely many "local operators" h_i at q = 0.

In this paper we studied the *spectral decomposition* of the path space with respect to the local energy functions h_i . That is, we decomposed the path space