Commun. Math. Phys. 181, 91-129 (1996)

Strings from N=2 Gauged Wess–Zumino–Witten Models

E. Ragoucy¹, A. Sevrin², P. Sorba^{1,3}

¹ Laboratoire de Physique Théorique, ENSLAPP, LAPP, BP110, F-74941 Annecy-le Vieux Cedex, France

² Theoretische Natuurkunde, Vrije Universiteit Brussel, B-1050 Brussels, Belgium

³ Laboratoire de Physique ENSLAPP, ENS Lyon, 46 affée d'Iralie, F-69364 Lyon Cedex 07, France

Received: 13 November 1995/Accepted: 2 February 1996

Abstract: We present an algebraic approach to string theory. An embedding of sl(2|1) in a super Lie algebra together with a grading on the Lie algebra determines a nilpotent subalgebra of the super Lie algebra. Chirally gauging this subalgebra in the corresponding Wess-Zumino-Witten model, breaks the affine symmetry of the Wess-Zumino-Witten model to some extension of the N = 2 superconformal algebra. The extension is completely determined by the sl(2|1) embedding. The realization of the superconformal algebra is determined by the grading. For a particular choice of grading, one obtains in this way, after twisting, the BRST structure of a string theory. We classify all embeddings of sl(2|1) into Lie super algebras and give a detailed account of the branching of the adjoint representation. This provides an exhaustive classification and characterization of both all extended N = 2 superconformal algebras and all string theories which can be obtained in this way.

Contents

1.	Introduction	92
2.	A Simple Example	93
3.	Classification of $sl(1 2)$ Embeddings into Lie Superalgebras	00
	3.1. $osp(1 2)$ embeddings: A reminder	00
	3.2. $sl(1 2)$ embeddings 1	00
4.	Decomposition of Lie Superalgebras w.r.t. $sl(1 2)$ 1	03
	4.1. Summary on $sl(1 2)$ representations	03
	4.2. Products of $sl(1 2)$ -representations	03
	4.3. Superalgebras fundamental representations	05
	4.4. $sl(1 2)$ -decomposition of the adjoint representation	06
	4.5. Case of $osp(2 2)$ subalgebras and indecomposable products 1	07
	4.6. Example	08
5.	The Standard Reduction	10
6.	The General Construction 1	15
	5.1. Some general considerations 1	15
	5.2. The invariant action	17