Localization of Classical Waves I: Acoustic Waves

Alexander Figotin, 1,* Abel Klein 2,**

- ¹ Department of Mathematics, University of North Carolina at Charlotte, Charlotte, NC 28223, USA E-mail: figotin@mosaic uncc edu
- ² Department of Mathematics, University of California, Irvine, Irvine, CA 92697-3875, USA E-mail: aklein@math.uci.edu

Received: 22 November 1995/Accepted: 29 February 1996

Abstract: We consider classical acoustic waves in a medium described by a position dependent mass density $\varrho(x)$. We assume that $\varrho(x)$ is a random perturbation of a periodic function $\varrho_0(x)$ and that the periodic acoustic operator $A_0 = -\nabla \cdot \frac{1}{\varrho_0(v)} \nabla$ has a gap in the spectrum. We prove the existence of localized waves, i.e., finite energy solutions of the acoustic equations with the property that almost all of the wave's energy remains in a fixed bounded region of space at all times, with probability one Localization of acoustic waves is a consequence of Anderson localization for the self-adjoint operators $A = -\nabla \cdot \frac{1}{\varrho(v)} \nabla$ on $L^2(\mathbb{R}^d)$. We prove that, in the random medium described by $\varrho(x)$, the random operator A exhibits Anderson localization inside the gap in the spectrum of A_0 . This is shown even in situations when the gap is totally filled by the spectrum of the random operator, we can prescribe random environments that ensure localization in almost the whole gap.

Contents

1. Int	troduction	440
1 1.	Acoustic waves and localization	441
1.2	Statement of results	442
2. A	Combes-Thomas argument	447
3. Pe	riodic operators and periodic boundary condition	449
3.1	Periodic boundary condition	450
3 2	Spectrum of periodic operators	
3 3	A Combas–Thomas argument for the torus	455
4. Lo	ocation of the spectrum of random operators	456
4 1	Approximation by periodic operators	456
4 2	Inside the gap	460

[★] This author was supported by the U.S. Air Force Grant F49620-94-1-0172

^{**} This author was supported in part by the NSF Grants DMS-9208029 and DMS-9500720