© Springer-Verlag 1996

Bethe Subalgebras in Twisted Yangians

Maxim Nazarov¹, Grigori Olshanski²

¹ University of Wales, Swansea SA2 8PP, United Kingdom. E-mail: mamln@swansea.ac.uk

² Institute for Problems of Information Transmission, Moscow 101447, Russia.

E-mail: olsh@ippi.ac.msk.su

Received: 5 September 1995/Accepted: 11 September 1995

Abstract: We study analogues of the Yangian of the Lie algebra \mathfrak{gl}_N for the other classical Lie algebras \mathfrak{so}_N and \mathfrak{sp}_N . We call them twisted Yangians. They are coideal subalgebras in the Yangian of \mathfrak{gl}_N and admit homomorphisms onto the universal enveloping algebras $U(\mathfrak{so}_N)$ and $U(\mathfrak{sp}_N)$ respectively. In every twisted Yangian we construct a family of maximal commutative subalgebras parametrized by the regular semisimple elements of the corresponding classical Lie algebra. The images in $U(\mathfrak{so}_N)$ and $U(\mathfrak{sp}_N)$ of these subalgebras are also maximal commutative.

Introduction

In this article we study the Yangian of the Lie algebra \mathfrak{gl}_N and its analogues for the other classical Lie algebras \mathfrak{so}_N and \mathfrak{sp}_N . The Yangian $Y(\mathfrak{gl}_N)$ is a deformation of the universal enveloping algebra $U(\mathfrak{gl}_N[t])$ in the class of Hopf algebras [D1]. Moreover, it contains the universal enveloping algebra $U(\mathfrak{gl}_N)$ as a subalgebra and admits a homomorphism $\pi: Y(\mathfrak{gl}_N) \to U(\mathfrak{gl}_N)$ identical on $U(\mathfrak{gl}_N)$.

Let \mathfrak{a}_N be one of the Lie algebras \mathfrak{so}_N and \mathfrak{sp}_N . In [D1] the Yangian $Y(\mathfrak{a}_N)$ was defined as a deformation of the Hopf algebra $U(\mathfrak{a}_N[t])$. It contains $U(\mathfrak{a}_N)$ as a subalgebra but does not admit a homomorphism $Y(\mathfrak{a}_N) \to U(\mathfrak{a}_N)$ identical on $U(\mathfrak{a}_N)$. In the present article we consider another analogue of the Yangian $Y(\mathfrak{gl}_N)$ for the classical Lie algebra \mathfrak{a}_N . It has been introduced in [O2] and called the twisted Yangian; see also [MNO]. The definition in [O2] was motivated by [O1] and [C2, S]. Algebras closely related to this analogue of $Y(\mathfrak{gl}_N)$ were recently studied in [NS].

Consider \mathfrak{a}_N as a fixed point subalgebra in the Lie algebra \mathfrak{gl}_N with respect to an involutive automorphism σ . The twisted Yangian $Y(\mathfrak{gl}_N, \sigma)$ is a subalgebra in $Y(\mathfrak{gl}_N)$. Moreover, it is a left coideal in the Hopf algebra $Y(\mathfrak{gl}_N)$. It also contains $U(\mathfrak{a}_N)$ as a subalgebra and does admit a homomorphism $\rho: Y(\mathfrak{gl}_N, \sigma) \to U(\mathfrak{a}_N)$ identical on $U(\mathfrak{a}_N)$; see Sect. 3. The algebra $Y(\mathfrak{gl}_N, \sigma)$ is a deformation of the universal enveloping algebra for the twisted current Lie algebra

$$\{F(t) \in \mathfrak{gl}_N[t] \mid \sigma(F(t)) = F(-t)\}.$$