

Homoclinic Points in Symplectic and Volume-Preserving Diffeomorphisms

Zhihong Xia¹

Department of Mathematics, Northwestern University, Evanston, Illinois 60208, USA

Received: 6 March 1995/Accepted: 28 July 1995

Abstract: Let M^n be a compact n-dimensional manifold and ω be a symplectic or volume form on M^n . Let ϕ be a C^1 diffeomorphism on M^n that preserves ω and let p be a hyperbolic periodic point of ϕ . We show that generically p has a homoclinic point, and moreover, the homoclinic points of p is dense on both stable manifold and unstable manifold of p. Takens [11] obtained the same result for n = 2.

1. Introduction and Statement of Main Results

Let M^n be an n-dimensional compact manifold with a symplectic or volume structure. Recall that a volume structure is a non-degenerate differential n-form ω on M^n and a symplectic structure is a closed differential two-form ω such that $\omega \wedge \cdots \wedge \omega$ (n/2 times) is a non-degenerate volume form. A symplectic manifold is always even dimensional. We consider diffeomorphisms of M^n that preserve the differential form ω . A diffeomorphism that preserves symplectic (resp. volume) form ω is called a *symplectic* (resp. *volume-preserving*) diffeomorphism. Symplectic diffeomorphism arises naturally as a time-one map and the Poincaré map of Hamiltonian systems.

Let $\operatorname{Diff}_{\omega}^r(M^n)$ denote the set of C^r diffeomorphisms that preserve ω , with uniform C^r topology. Let $\phi \in \operatorname{Diff}_{\omega}^r(M^n)$, then $\phi^*(\omega) = \omega$. Let p be a point in M^n , p is said to be a *periodic point* of ϕ with period k if $\phi^k(p) = p$. Periodic points with period one are called *fixed points*. A periodic point p with period k is said to be *hyperbolic* if $d(\phi^k)|_{T_p(M^n)}: T_p(M^n) \to T_p(M^n)$ has no eigenvalue on the unit circle. For any hyperbolic periodic point p, there exist a *stable manifold*, denoted by $W_{\phi}^s(p)$ and an *unstable manifold*, denoted by $W_{\phi}^u(p)$. A *homoclinic point* of p with respect to ϕ is an intersection of $W_{\phi}^u(p) \cap W_{\phi}^s(p) \setminus \{p\}$. q is a *transversal* homoclinic point of p with respect to ϕ if $T_q(M) = T_q(W_{\phi}^s(p)) \oplus T_q(W_{\phi}^u(p))$.

We state our main results.

¹ Research supported in part by National Science Foundation.