Compensations in Small Divisor Problems

L. Chierchia¹, C. Falcolini²

¹ Dipartimento di Matematica, Terza Università di Roma, via Corrado Segre 2, I-00146 Roma, Italy. Internet: luigi@matrm3.mat.uniroma3.it

Received: 11 August 1994/in revised form: 10 March 1995

Abstract: A general direct method, alternative to KAM theory, apt to deal with small divisor problems in the real-analytic category, is presented and tested on several small divisor problems including the construction of maximal quasi-periodic solutions for nearly-integrable non-degenerate Hamiltonian or Lagrangian systems and the construction of lower dimensional resonant tori for nearly-integrable Hamiltonian systems. The method is based on an explicit graph theoretical representation of the formal power series solutions, which allows to prove compensations among the monomials forming such representation.

Contents

1. Introduction	135
2. A General Set-up for Small Divisor Problems	140
3. Weighted trees	145
4. Compensations I (Maximal Hamiltonian tori)	147
4.1. Tree expansion	147
4.2. Compensations	149
5. Compensations II (Maximal Lagrangian tori)	151
6. Compensations III (Lower dimensional tori)	152
7. An example with no compensations	154
A Proof of (4.17)	155

1. Introduction

1. Small divisors are ubiquitous in non-linear conservative dynamical systems; they arise, for example, in: conjugacy problems such as linearizations of germs of analytic functions or linearizations of circle maps (see, e.g., [1] and references therein);

² Dipartimento di Matematica, Università di Roma "Tor Vergata", via della Ricerca Scientifica, I-00133 Roma, Italy. Internet: falcolini@vax.mat.utovrm.it*

^{*} L.C. thanks C. Simó and the *Centre de Recerca Matemàtica* (Bellaterra) for kind hospitality; he also acknowledges partial support by CNR-GNAFA. The authors gratefully acknowledge helpful discussions with C. Liverani.