

On Nonlinear Stability of General Undercompressive Viscous Shock Waves

Tai-Ping Liu, Kevin Zumbrun

Department of Mathematics, Stanford University, Stanford, CA 94305, USA

Received: 20 September 1994

Abstract: We study the nonlinear stability of general undercompressive viscous shock waves. Previously, the authors showed stability in a special case when the shock phase shift can be determined a priori from the total mass of the perturbation, using new pointwise methods. By examining time invariants associated with the linearized equations, we can now overcome a new difficulty in the general case, namely, nonlinear movement of the shock. We introduce a coordinate transformation suitable to treat this new aspect, and demonstrate our method by analyzing a model system of generic type. We obtain sharp pointwise bounds and L^p behavior of the solution for all $p, 1 \leq p \leq \infty$.

Contents:

I.	Introduction)
II.	Analytic Framework	3
	2.1. Preliminaries	3
	2.2. Time Invariants of the Linearized Equation	4
	2.3. Linear Decay Criterion	5
	2.4. Diagonalizing Transformation	3
	2.5. Nonlinear Version)
III.	Application to an Example System)
	3.1. Perturbed Burgers Equation)
	3.2. The case $\varepsilon = 0$	2
	3.3. Linearized Stability	3
	3.4. Nonlinear Stability	5
	3.5. Proof of the main Theorem	5
IV.	Concluding Discussion)
	4.1. Generality)
	4.2. Curved Shocks)
	4.3. Extension to $n \ge 3$	l
	4.4. Examples, $n = 3$	3