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Abstract: We prove a vanishing theorem for Lie algebra cohomology which consti-
tutes a loop group analogue of Kostant's Lie algebra version of the Borel-Weil-Bott
theorem. Consider a complex semi-simple Lie algebra g^ and an integrable, irre-
ducible, negative energy representation J f of Z,g<r. Given n distinct points zk in (C,
with a finite-dimensional irreducible representation Vk of g^ assigned to each, the
Lie algebra g<r[z] of g<r;-vaΓued polynomials acts on each V^ via evaluation at zk.
Then, the relative Lie algebra cohomology H* (gc[z]? 9<c; &? ® V\(z\) ® 0 Vn(zn))
is concentrated in one degree. As an application, based on an idea of G. Segal's,
we prove that a certain "homolorphic induction" map from representations of G to
representations of LG at a given level takes the ordinary tensor product into the
fusion product. This result had been conjectured by R. Bott.
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