Commun. Math. Phys. 173, 265 - 311 (1995)

Lie Algebra Cohomology and the Fusion Rules

Constantin Teleman

Department of Mathematics, Harvard University, Cambridge, MA 02138, USA. E-mail: teleman @zariski.harvard.edu

Received: 8 July 1994

Abstract: We prove a vanishing theorem for Lie algebra cohomology which constitutes a loop group analogue of Kostant's Lie algebra version of the Borel–Weil–Bott theorem. Consider a complex semi-simple Lie algebra $\mathfrak{g}_{\mathbb{C}}$ and an integrable, irreducible, negative energy representation \mathscr{H} of $L\mathfrak{g}_{\mathbb{C}}$. Given *n* distinct points z_k in \mathbb{C} , with a finite-dimensional irreducible representation V_k of $\mathfrak{g}_{\mathbb{C}}$ assigned to each, the Lie algebra $\mathfrak{g}_{\mathbb{C}[z]}$ of $\mathfrak{g}_{\mathbb{C}}$ -valued polynomials acts on each V_k , via evaluation at z_k . Then, the relative Lie algebra cohomology $H^*(\mathfrak{g}_{\mathbb{C}[z]},\mathfrak{g}_{\mathbb{C}};\mathscr{H}\otimes V_1(z_1)\otimes\cdots\otimes V_n(z_n))$ is concentrated in one degree. As an application, based on an idea of G. Segal's, we prove that a certain "homolorphic induction" map from representations of G to representations of LG at a given level takes the ordinary tensor product into the fusion product. This result had been conjectured by R. Bott.

Contents

0.	Introduction	266
1.	Preliminaries.	269
	Sect. 1.1. The Borel–Weil–Bott Theorem	269
	Sect. 1.2. Generalized BWB: The Case of Maximal Parabolic	
	Subgroups	270
	Sect. 1.3. Loop Groups	271
	Sect. 1.4. The Lie Algebra Statement	272
	Sect. 1.5. Fusion as Holomorphic Induction	273
	Sect. 1.6. Outline of the Proof of Theorem 0	275
2.	The Hilbert Space Vanishing Theorem	276
	Sect. 2.0. Geometric Motivation	276
	Sect. 2.1. The Setup	277
	Sect. 2.2. Statement of the Vanishing Theorem.	278
	Sect. 2.3. Elementary Hilbert Space Properties	279
	Sect. 2.4. Nakano's Identity	280
	Sect. 2.5. Nakano Positivity	282
3.	Lie Algebra Cohomology	284