Commun. Math. Phys. 173, 43 - 76 (1995)



## **Determinants of Dirac Boundary Value Problems over Odd-Dimensional Manifolds**

## S.G. Scott<sup>1</sup>

Departamento de Matématicas, Universidad de los Andes, Bogotá A.A.4976, Colombia

Received: 25 October 1993/in revised form: 27 January 1995

**Abstract:** We present a canonical construction of the determinant of an elliptic selfadjoint boundary value problem for the Dirac operator D over an odd-dimensional manifold. For 1-dimensional manifolds we prove that this coincides with the  $\zeta$ -function determinant. This is based on a result that elliptic self-adjoint boundary conditions for D are parameterized by a preferred class of unitary isomorphisms between the spaces of boundary chiral spinor fields. With respect to a decomposition  $S^1 = X^0 \cup X^1$ , we explain how the determinant of a Dirac-type operator over  $S^1$  is related to the determinants of the corresponding boundary value problems over  $X^0$ and  $X^1$ .

## 1. Introduction

Let X be a compact odd-dimensional Riemmanian spin manifold with boundary Y. We assume there is a collar neighbourhood  $U = [0, 1] \times Y$  of the boundary in which the Riemannian metric is a product metric. Fix a choice of spin structure, and let S be the complex spinor bundle over X. The Dirac operator  $D: C^{\infty}(X;S) \to C^{\infty}(X;S)$  is the first-order elliptic differential operator defined at  $x \in X$  by  $Ds = \sum_i e_i \cdot \nabla_{e_i} s$ , where  $\nabla$  is the canonical metric connection on S and  $\{e_i\}$  is an orthonormal frame for  $T_x X$ . The  $e_i$  act on S by Clifford multiplication. The restriction of S to Y may be identified with the spinor bundle over Y with  $Z_2$  grading  $S_Y = S^+ \oplus S^-$ . That induces a decomposition of the boundary spinor fields  $F = F^+ \oplus F^-$  into positive and negative chirality with respect to which the Dirac operator  $D_Y$  over the boundary splits into the chiral operator  $D_Y^+: F^+ \to F^-$ , whose index is calculated by evaluating the  $\hat{A}$ -cohomology class over Y, and its formal adjoint  $D_Y^-$ . We assume that  $D_Y$  is invertible.

By a *boundary value problem*  $D_W$  for D, we shall mean D with restricted domain  $C_W^{\infty}(X;S) = \{\psi \in C^{\infty}(X;S) : P_W b \psi = 0\}$ , where  $P_W : C^{\infty}(Y;S) \to C^{\infty}(Y;S)$  is a pseudodifferential projection operator (of order 0) with range W, and  $b : C^{\infty}(X;S)$ 

<sup>&</sup>lt;sup>1</sup> Current address: Physics Department, Oxford University, Oxford, OX1 3PU, U.K.